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Abstract

An increasing amount of contemporary philosophy of mathematics posits,
and theorizes in terms of special kinds of mathematical modality. The goal of
this paper is to bring recent work on higher-order metaphysics to bear on the
investigation of these modalities. The main focus of the paper will be views
that posit mathematical contingency or indeterminacy about statements that
concern the ‘width’ of the set theoretic universe, such as Cantor’s continuum
hypothesis. Within a higher-order framework I show that contingency about
the width of the set-theoretic universe refutes two orthodoxies concerning the
structure of modal reality: the view that the broadest necessity has a logic of S5,
and the ‘Leibniz biconditionals’ stating that what is possible, in the broadest
sense of possible, is what is true in some possible world. Nonetheless, I suggest
that the underlying picture of modal set-theory is coherent and has attractions.

Modal logic has played a large role in contemporary philosophy of mathematics.
Many ideas about mathematical objects, especially sets, have been fruitfully studied
using distinctive mathematical modalities according to which some mathematical
truths, and perhaps also mathematical objects, are contingent.1

From the perspective of more traditional modal metaphysics, the postulation of
these mathematical modalities carries some substantive commitments. They conflict
with two commonly held theses, found in Kripke (1980): (i) that the truths of math-
ematics are metaphysically necessary (and that there is no metaphysical contingency
about what mathematical objects there are), and (ii) that metaphysical necessity is
the broadest kind of necessity there is. Given the first it follows that these mathemat-
ical modalities are neither identical to, nor restrictions of the more familiar notion of

*This paper has benefited greatly from discussions with Zach Goodsell, Chris Scambler, Joel
Hamkins and Jeff Russell on issues relating to this paper. Thanks also to two anonymous referees
for several helpful suggestions.

1These include, but are not limited to: Shapiro (1985), Hellman (1989), Parsons (1983), Fine
(2006), Linnebo (2013), Studd (2013), Hamkins and Linnebo (2022), Scambler (2021), Builes and
Wilson (2022), Brauer (2020). In the set-theoretic case, examples of contingent statements put
forward in the literature can be roughly divided into those about height, such as large cardinal
hypotheses, and those about width, such as the continuum hypothesis. This trend is certainly
not limited to contemporary philosophy of mathematics: there are, for instance, many connections
between intuitionistic mathematics and modal logic.
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metaphysical necessity as it is normally understood: modal reality is richer than we
thought.

This invites a number of further questions about the structure of modal reality,
now understood not as questions about the features of metaphysical modality specif-
ically, but about modalities in general and their relationships. The goal of this paper
is to explore some of these questions in the context of a specific higher-order theory
of modalities. In this framework, a notion of broad necessity emerges which has all
modalities—mathematical, metaphysical or otherwise—as restrictions.

My focus will be on the implications of views that posit mathematical contin-
gency or indeterminacy about statements that concern the ‘width’ of the set theo-
retic universe—a prime example being Cantor’s continuum hypothesis. I will argue
that this requires rejecting two further orthodoxies concerning the structure of modal
reality.

The first departure from orthodoxy is that we must embrace a radical rejection of
Brouwer’s principle—we must acknowledge the possibility that there are truths that
are possibly impossible (section 5). The rejection is radical because we must accept
the existence of such truths when ‘possible’ and ‘impossible’ are understood in their
broadest senses. (It is widely thought that Brouwer’s principle fails for the mathe-
matical modalities. One consequence of the more radical rejection, by contrast, is
that it rules out backwards looking modalities like those posited by Studd (2013).)

The second departure from orthodoxy (section 6) is that we must reject the so-
called Leibniz biconditionals, stating that what is possible, in the broadest sense of
possible, is what is true in some broadly possible world; an assumption that has
almost been taken for granted in modal metaphysics, and has been very influential
in epistemology, philosophical logic, natural language semantics, and many other
disciplines.

Common to both of these arguments is the idea that, if there is width contingency,
information encoding the membership conditions for merely possible subsets of an ac-
tual set cannot exist in actuality or else the sets would actually exist after all (by
the separation axiom). Brouwer’s principle ensures that there are actual individuals
(things that might have been sets) corresponding to every merely possible set, and
these individuals contain information about their possible membership conditions.
The Leibniz biconditionals give us the ability to single out, using maximally specific
properties, merely possible sets, letting us do the same. Section 7 argues that these
conclusions hold even when we weaken the quantificational logic to accommodate con-
tingent existence. It is common in the literature on quantified modal logic to appeal
to a distinction between the ordinary “inner” quantifiers, and the “outer” quantifiers
which are governed by a classical quantificational logic. Thus even if the individu-
als and properties encoding this information about possible membership conditions
don’t properly exist, but exist only in the outer sense, the same sort of reasoning can
still be applied. The view thus must accept a radical kind of contingency about what
there is: while the standard view is that there is only contingency about what there is
according to the inner quantifiers—the outer quantifiers have a “constant domain”—
the view under consideration must allow even the classical outer quantifiers to have
an “expanding domain” interpretation.
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In the final section of the paper I turn to the question of whether mathematical
contingency is viable, despite these negative results, and if so how pervasive it is.
I conjecture that against a minimal background logic of mathematical modality it
is consistent that there is a wide range of width contingency, and suggest that the
resulting picture still has attractions. On the other hand, some authors have suggested
that mathematical indeterminacy is so pervasive it could even arise in arithmetical
contexts.2 I end by pointing out that, against the same minimal background logic
for the mathematical modalities, arithmetic is determinate and non-contingent (cf.
Goodsell (2022)), raising the prospect of a more general project to figure out what
makes a mathematical statement capable of being indeterminate or contingent.

1 Set-Theoretic Contingency: Height and Width

Let’s begin by delineating some different motivations for positing mathematical con-
tingency. We will look at three different motivations for positing contingency about
the sets in the literature, and distinguish two distinctive sorts of contingency which
I’ll gloss as height and width contingency.

Motivations for positing height contingency can be traced back to Cantor himself.
Cantor’s view was that the transfinite ordinals—mathematical objects representing
the order-types of well-orders—continued indefinitely through the operations of tak-
ing successors and limits. Some have taken Cantor’s remarks to suggest a kind of
mathematical contingency. Not any collection of sets form a set, on pain of Russell’s
paradox. But they nonetheless could have formed a set—a stage Vκ of a possible
larger set-theoretic universe. Charles Parsons (Parsons (1983)), and several subse-
quent authors, have been more explicit about the modal in this formulation.3 For
now we’ll give this idea the following gloss:4

Height Extensibility Necessarily, the sets (whatever they may be) are possibly a
proper initial segment of all the sets.

Here the sense of possibility in play is, presumably, not metaphysical possibility but
a primitive kind of mathematical possibility in need of further explication (I will offer
some tentative suggestions in section 4).

More recently there has been significant interest in a different kind of indefinite
extensibility inspired by Paul Cohen’s method of forcing. Joel Hamkins, in a number
of papers, has suggested that, even when we restrict ourselves to a particular infinite
stage Vα—‘the sets of rank α’—one can always consider a larger set theoretic universe
that contains more sets of that rank.5 For instance, the method of forcing lets one

2See Warren and Waxman (2020), and Field (1998).
3See Fine (2006), Linnebo (2013), Studd (2013). I primarily draw from the latter two papers.
4Actually Zermelo’s idea seems to be importantly different from that of Parsons’, formalized

below. Zermelo above is concerned with the structure of ZF-relations generally, without selecting
any particular one for attention, so his form of indefinite extensibility is one formulable in the
language of pure higher-order logic alone (see Bacon (2023b)). By contrast set-theory is often taken
to be the study of one particular ZF-relation, membership, and Parsons, Linnebo and Studd each
formulate their versions of indefinite extensibility in terms of it.

5See, for instance, Hamkins (2012).
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describe, within any given set-theoretic universe, a larger one that contains more sets
of natural numbers.6 We have an explicitly modal articulation of related ideas in
Scambler (2021), Pruss (2020), Builes and Wilson (2022).7 Let’s give this idea the
following gloss:

Width Extensibility Necessarily, the sets of rank α (whatever they may be) are
possibly properly contained in the sets of rank α.

Again, the notion of possibility here is a primitive mathematical one, which may be
identical to or orthogonal to the one appealed to above. These latter authors are
typically interested in Width Extensibility because they want to make sense of the
idea that all sets are countable in a strictly modal sense:

Countabilism Every set is ‘countable’ in the sense that for any set x, it is possible
that there is an injection from the natural numbers to x.

For some motivations for Countabilism see Meadows (2015) and Builes and Wilson
(2022).8 Countabilism also follows from the following schema, where A can be any
first-order formula of set-theory and p ⊩ A(x̂1, . . . , x̂n) is a statement in the lan-
guage of first-order set-theory that expresses in the object language the claim that
A(x1, ..., xn) is true in every forcing extension by a generic filter containing p:9

Forcing Possibilism If there is a partial order P and p ∈ P such that p ⊩ A(x̂1, . . . , x̂n),
then it’s possible that A(x1, . . . , xn).

Forcing Possibilism legitimizes a certain practice that seems commonplace among
set-theorists. The set-theorist I have in mind sets out theorizing in the language of
set theory. They may then consider various partial orders P belonging to the cumu-
lative hierarchy, and its associated collection of dense subsets D, and ask seemingly
modal questions of the form ‘what would the set-theoretic universe have looked like
if there had been a filter that had intersected every element of D?’. For instance,
P might consist of finite bits of information about a potential function from ω to
{0, 1} ordered by informativeness, and the postulated filter then consists of a collec-
tion of these bits of information that approximate a total function f : ω → {0, 1}
which differs from every actually existing function over some finite bit of information
(since, for any actual function, the set of finite partial functions not contained in

6One can even describe what these new sets of natural numbers will have to look like, although
they will be in some sense ω-inconsistent from the perspective of the present universe.

7Hamkin’s also uses modal logic in his work to spell out the multiverse view–Hamkins (2003),
Hamkins et al. (2015)–but it seems clear that his uses of the modal operator 2A are really abbre-
viations for something quantificational: 2A means A holds in all forcing extensions of the universe,
where this is a statement that can be articulated in the extensional language of first-order set theory.

8Builes and Wilson (2022) argue that while height extensibilism can be motivated by a certain
sort of attitude to Russell’s paradox—the non-self-membered sets do not in fact form a set, they
could have done—Countabilism follows from taking a parallel attitude toward Cantor’s theorem.

9Countabilism follows since, for any set, x, the partial order of finite partial functions from ω to x
forces the claim that x̂ is countable, so Forcing Possibilism implies that x is possibly countable. This
principle also implies the principle HE from Scambler (2021). A proof that HE and Countabilism
are equivalent correspond to theorems 3 and 4 of Scambler (2021) (see p.1092). One difference is
that Scambler’s framework uses plural quantification.
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that function is dense).10 Consequently, by positing the possibility of such a filter we
describe a possible set-theoretic universe containing a new function from ω to {0, 1}.
One might attempt to make sense of this practice by interpreting the set-theorist’s
quantifiers as initially ranging over a restricted portion of the ‘real’ sets, and the
possibility containing the new filter as simply arising from enlarging the range of
those quantifiers. But this approach assumes there is a background universe of ‘real’
sets—consisting of all the sets there are—yet the procedure for describing new sets
can be applied just as readily to this background universe of all sets as it can to any
of its restrictions. Granted, it is possible still to reduce this seemingly modal talk to
extensional quantification over possibilities, in the style of Lewis (1986), even when it
is applied to the entire universe of sets.11 Each element of P may be thought of as a
‘possibility’—in our running example, the possibility specifies the behaviour of a new
function on ω on finitely many of its arguments. In the language of set theory, one
can define a relation of a sentence being ‘true at’ a possibility, from which we may
paraphrase any claims of possibility and necessity extensionally, in terms of existen-
tial or universal quantification over possibilities. Nonetheless, I find the idea that the
set-theorist is describing genuine contingency about the set-theoretic universe to be
deeply attractive.

Apart from Countabilism and Forcing Possibilism, contingency about the width
of the set-theoretic hierarchy can also be motivated by considerations of set-theoretic
indeterminacy. Cantor’s continuum hypothesis, which we will abbreviate CH, is the
claim that every infinite set of real numbers (identified with a certain set in our
iterative hierarchy) can either be put in one-to-one correspondence with the set of all
real numbers or can be put in one-to-one correspondence with the natural numbers.
This claim is, surprisingly, left unsettled by presently accepted mathematics: no
currently accepted axiomatic theory (whether first-order or higher-order) implies CH
or implies its negation.12 Perhaps this is a symptom of a deeper kind of indeterminacy
about the truth value of this statement. According to this picture, our state of
ignorance about the continuum hypothesis is akin to our ignorance about whether
a borderline heap is a heap or not: there is simply no fact of the matter, and so
additional investigation would yield no headway. Indeterminacy seems to be a kind
of contingency, and in order for the continuum hypothesis to be contingent in this
sense, it must be contingent what real numbers there are.

10More precisely, P consists of the finite partial functions ω ⇀ {0, 1} ordered by inculsion. Every
actually existing function f : ω → {0, 1} determines a filter of finite partial functions F (its finite
subsets), but will also be disjoint from one of the actual dense subsets of P, namely P \ F . Thus
if there had been a filter of partial functions that intersected every element of D, it’s union would
have to be a totally defined function on ω that doesn’t actually exist.

11Lewis bases his reduction on a Kripke semantics, which trades on complete possibilities. While
these possibilities are partial, there is a parallel semantic treatment of modality in terms of quan-
tification over partial possibilities (see Humberstone (1981)), and so a parallel reduction of modal
talk to extensional quantification is possible in this context as well.

12It is sometimes suggested that second-order set theory settles the continuum hypothesis (see
Kreisel (1967) p150), but these authors have a semantically defined theory in mind when they talk
about by ‘second-order set theory’.
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2 Why do we need modalities?

What does the modal way of formulating these questions afford us? There is a way of
thinking about mathematical contingency that isn’t genuinely modal. Consider, by
analogy, the way that modality is treated by David Lewis: he uses modal operators,
but he ultimately paraphrases those operators away in extensional terms, using first-
order quantification over concrete possible worlds.13

The use of modal operators in Hamkins (2012), like in Lewis, is similarly superfi-
cial, and is ultimately spelled out in terms first-order quantification over universes—
indeed the modal operators in that setting can be eliminated entirely in terms of the
first-order set-theoretic primitives using forcing theoretic ideas. Similarly, a common
story about indeterminacy, supervaluationism, might make room for some sort of
set-theoretic indeterminacy without positing any genuine set-theoretic contingency.
Indeterminacy, for the supervaluationist, is more perspicuously expressed by a met-
alinguistic predicate than by a propositional operator. A sentence is indeterminate
when there are several candidate, or “admissible”, interpretations of the vocabulary
appearing in the sentence, some of which make the sentence true and others which
make the sentence false.

In this section I’ll argue that these imitative uses of mathematical contingency
cannot properly capture indeterminacy or contingency about the width of the set-
theoretic universe. This inability follows, essentially, from the existence of categoricity
theorems that can be formulated and derived in a minimal (axiomatic) higher-order
logic. By contrast, I will suggest that genuinely modal formulations of contingency
and indeterminacy are not subject to these results.

Higher-order logic is a very natural framework for investigating these questions.
First, following (Williamson (2013) p.422, Williamson (2003b) §4), we can express
the existence of genuine (as opposed to metalinguistic) contingency and indetermi-
nacy using a higher-order generalization into sentence position: ∃tp(3p ∧ 3¬p) or
∃tp(¬∆p ∧ ¬∆¬p). The truth of these sorts of existential generalizations do not get
preserved under attempts to paraphrase away modality, and may be thought to cap-
ture the difference between genuine and ersatz contingency.14 Second, it seems to
be the appropriate framework for articulating the extensional paraphrases of mathe-
matical contingency claims. There are well-known difficulties with simply identifying
the supervaluationists’ admissible interpretations of ‘∈’, or Hamkins’ universes, with
first-order individuals, such as set-theoretic models.15 By contrast, if we can quan-
tify directly into the position of a binary predicate, such as ∈, things run much more
smoothly. This is because a higher-order generalization does not need to be un-
derstood as a notation for quantifying over another sort of individual, such as sets,
classes or properties—this would gain us nothing. We can rather think of them as
devices for making generalizations into grammatical positions other than that of a
singular term. The move from ‘John talks’ to ‘∃X John Xs’ has the same status
as the move from ‘John talks’ to ‘∃x x talks’ — it is immediate and logical, and in

13Lewis (1968), and for further relevant discussion, Williamson (2013) section 7.4.
14For a discussion of one sort of problem that arises paraphrasing the propositional quantifiers in

David Lewis’s extensional framework, see Dorr (2005).
15See section 1 of Williamson (2003a).
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neither case is it dependent on the existence of abstract objects, like sets, classes,
or properties. For if ‘John talks’ does not logically imply the existence of abstract
objects, nothing that ‘John talks’ logically implies can either. Similarly, we do not
need to rely on set-theory to specify the intended interpretation of the higher-order
quantifiers (a set-theoretic interpretation of ∃R would not license the move from A(∈)
to ∃R.A(R)), or even to characterize its logic.16 Our approach will be axiomatic—
much like axiomatic set theory does not require a set-theoretic semantics to proceed,
neither does higher-order logic. Indeed, an argument due to Harris (1982) suggests
we do not need to specify the meanings of the higher-order quantifiers in independent
terms: the axioms and rules governing the higher-order quantifiers pin them down
uniquely, in the sense that any other generalizing device satisfying them are logically
equivalent when they appear in any sentence.

Returning to the issue at hand, we can use higher-order generalizations to provide
a supervaluationist account of the indeterminacy of the continuum hypothesis:

Supervaluationism The symbol ‘∈’, as used by mathematicians, has multiple ad-
missible interpretations. Under some such interpretations ‘CH’ is true, and
under others it is false.

Here ‘admissibility’ should be a higher-order predicate that combines with a binary
predicate to form a sentence, and the quantification in question is higher-order. Using
e, t and σ → τ respectively to indicate expressions with the type of a name, a sentence,
and of an expression that combines with an expression of type σ to form an expression
of type τ , we can represent the admissibility predicate as an expression, Adm of type
(e → e → t) → t. We can then formulate the supervaluationist claim flatfootedly as:

1. ∃e→e→tRS(AdmR ∧AdmS ∧ CHR ∧ ¬CHS)

where CHR is the result of replacing ∈, in the statement of the continuum hypoth-
esis in first-order set theory, with the second-order variable R, and ∃e→e→t is the
device for making generalizations into the position of a binary predicate. Statements
about universes can be given a similar higher-order rendition, without falling into
the paradoxes that would ensue if they were treated as further individuals. (Note,
however, that having sharply distinguished quantification from singular quantifica-
tion over properties, we will follow a common practice of using talk of relations and
properties in English to indicate formal sentences that involve higher-order general-
izations; strictly speaking the indicated sentences do not quantify over properties or
relations.)

Now what sort of relations could be admissible interpretations of ‘∈’, or represent
the membership relation of a universe? The issues at stake here are parallel; we will
focus on the notion of admissibility to keep discussion brief. There are a great many
properties of relations that can be expressed in a higher-order language. An admis-
sible notion of membership, R, should of course be extensional: if two individuals in

16It is common in mathematical logic to identify higher-order logic with the set of sentences true
in full extensional Henkin models. Apart from eluding axiomatization, this logic has the drawback
of validating the Fregean principle of extensionality in which propositions, properties and relations
are individuated by coextensiveness, ruling out any kind of genuine contingency in the logic.
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Extensionality ∀exy(∀ez(z ∈ x ↔ z ∈ y) → x =e y)

Union ∀ex∃ey∀ez(z ∈ y ↔ ∃w ∈ x.z ∈ w))

Powerset ∀ex∃ey∀ez(z ∈ y ↔ z ⊆ x)

Foundation ∀ex(∃ey.y ∈ x → ∃ey ∈ x¬∃z ∈ x.z ∈ y)

Replacement ∀e→e→tR∀ex(∀eyzz′(Ryz∧Ryz′ → z = z′) → ∃ez∀ey(y ∈ z ↔ ∃w ∈ x.Rwy))

Infinity ∃ex(∃y ∈ x(∀z.z /∈ y) ∧ ∀y ∈ x(y ∪ {y} ∈ x).

Figure 1: The axioms of ZF

the field of R are such that the same things bear R to them — i.e. R counts them as
sets with the same members — then they should be the same. Similarly, since sets
are built up in stages, it’s natural to think that an admissible notion of membership
should be well-founded, which can also be given a straightforwardly higher-order for-
mulation. Indeed, for each axiom of second-order ZF—listed in figure 1—there is a
corresponding property of relations which ought to be had by any candidate notion
of membership. These properties are obtained by replacing ∈ in the principles in
figure 1 with R, and restricting the quantifiers to the field of R—i.e. replacing ∀ex
with ∀e(∃y(Rxy∨Ryx) → and doing similar things for ∃e (the restriction is necessary
even when R =∈ because we are interpreting ∀e as an absolutely general quantifier
that ranges over tables and chairs as well as sets). The conjunction of these five
properties is a single second-order sentence ZFR in a single higher-order variable R.
Using the device of λ-abstraction we get a definition belonging to the language of
pure higher-order logic:

ZF := λR.ZFR

Thus, our hypothesis is that admissible precisifications of membership are ZF rela-
tions:

2. ∀e→e→tR(AdmR → ZFR)

In order for there to be indeterminacy in the supervaluational sense, there must
be variation between the ZF relations. However Zermelo (2010) famously showed
that the variation you can have between ZF relations is very limited: ZF relations
can differ about their ‘height’—how long the iteration process continues—but cannot
differ about the ‘width’—what the sets are like at a particular stage. If you take the
series of stages V R

0 , V R
1 , ... of a ZF relation R—constructed by repeatedly applying

Rs internal powerset operation to its emptyset—they will be isomorphic to the stages
V S
0 , V S

1 , ... of another ZF relation S, provided those stages both are reached in the
respective constructions. It follows that the structure of the pure sets is pinned down
uniquely up to any given stage: the only freedom one has concerns how long the
sequence of stages extends. In particular we have

3. ∀e→e→tRS.(ZF(R) ∧ ZF(S) → (CH(R) ↔ CH(S)).

Combined with the claim that admissible relations are ZF relations, we refute the
supervaluational account of the indeterminacy of CH: 1-3 are inconsistent. In general,
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these extensional/metalinguistic alternatives to genuine contingency seem to only
make space for height contingency, not width contingency.

Now let’s consider what happens if we posit real contingency about the set-
theoretic universe: not mere indeterminacy about what our set-theoretic words refer
to, but rather indeterminacy in the sets themselves, concerning how they are related
to one another by the membership relation.17 This indeterminacy would not be
metalinguistic, but a kind of contingency concerning the pattern of the membership
relation among the individuals. Here we must thus assume a notion of propositional
indeterminacy that is not reduced or explained in terms of linguistic indeterminacy,
but is simply another propositional operator alongside the other more familiar modal
operators.

The logical situation with respect to Zermelo’s theorem is somewhat different
here. Zermelo’s theorem is, in some sense, an ‘intra-world’ constraint: no two ZF
relations from the same possibility can differ in width. But there is no obvious way
to get an ‘inter-world’ analogue of Zermelo’s theorem. It’s instructive to look at one
strategy for proving such a theorem, and seeing where it might fail. The strategy
would be to pick the actual sets and membership relation out in a modally rigid way,
and then use Zermelo’s theorem to compare the rigidified membership relation with
the sets at possibilities where they might have changed. Let us suppose, then, that
we can rigidly pick out to the things which are in fact sets and rigidly pick out the
membership relation. Call this rigid relation ∈∗. One might hope to argue, as above,
that necessarily, ∈∗ and ∈ agree in width, i.e. that the actual sets are isomorphic
to the sets under the membership relation, whatever that might be at the relevant
possibility, by appealing to the necessity of Zermelo’s theorem. In which case ∈ and
∈∗ would agree about CH, and of course the value of CH according to ∈∗ is not
contingent given ∈∗ is by stipulation rigid. However, in order to apply Zermelo’s
theorem, we need that ∈∗ is not only a ZF relation in actual fact, but necessarily a
ZF relation. But crucially ∈∗ could fail to satisfy the separation axiom, especially
if we consider possibilities at which there are new properties for the second-order
quantifier to range over. For instance, if it is possible that there be a set, x ⊆ N, of
natural numbers that doesn’t in fact exist (as one would expect for the contingency
of CH) then there is a new property, λy.y ∈ x, which does not define a subset∗ of N
according to ∈∗.

Similar morals may be drawn for the Width Extensibilist. What we observe,
firstly, is that the possibility of a ZF relation containing more sets of rank α cannot
be actually witnessed, for by Zermelo’s theorem any two ZF relations are isomorphic
up to a given rank (provided they both extend that far). Nonetheless, Width Exten-
sibility is on first-looks consistent with Zermelo’s theorem because the actual sets of
rank α, whatever they might be, could possibly fail to contain all the sets of rank
α, assuming there could have been more properties and thus more conditions with
which to define subsets of sets with rank below α. We see then that both sorts of
width contingency require the possibility not merely of ‘new’ type e entities, but also

17See Bacon (2018b), Goodsell (2022). On the possibility of non-linguistic indeterminacy, Goodsell
writes “On this conception, for arithmetic to be indeterminate is for the numbers themselves to have
an indeterminate structure, independently of how we speak about them” p.128.
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of ‘new’ type e → t properties.

3 The Structure of Modal Reality

The sorts of mathematical contingency posited will have wider implications for the
structure of modal reality. In this section and the next three we articulate some of
these connections.

Several things require untangling before we can draw these implications. For a
start, what do we mean by the structure of modal reality? Often metaphysicians mean
by this various theses formulated in terms of a particular kind of modality, Kripke’s
notion of ‘metaphysical necessity’. But as this modality is used by Kripke and subse-
quent philosophers, mathematics is metaphysically necessary (see Kripke (1980) p36).
It follows that the mathematical contingency and indeterminacy appealed to above
cannot be explained in terms of metaphysical contingency or any restriction of it,
and the possibilities on which mathematical indeterminacy and extensibility theses
are predicated are not metaphysical possibilities. These theses concern the structure
of modality in general, but not the structure of metaphysical necessity.

To theorize about the structure of modal reality in its entirety, we must be able
to talk about all the modal notions there are, metaphysical modality and otherwise,
and talk about the logical relationships between these modal notions. Crucial to this
enterprise is the ability to specify what it means for an operator to be a modality,
and to specify the logical relationships between modalities—when one modality is
as broad as another. (For instance, we have seen above that metaphysical necessity
is not as broad as mathematical necessity or determinacy.18) Indeed, higher-order
logic provides us with the perfect framework to carry this out, for in the language of
higher-order logic one can quantify directly into the positions occupied by sentences
and by sentential operators allowing one to formulate definitions of these notions.
Once this is done it is possible to then introduce a notion of broad necessity, an
operator defined as possessing every necessity: what is broadly possible concerns
what is possible in any sense of ‘possible’. We will argue that the study of the
structure of broad necessity has a good claim to being the study of the ‘structure
of modal reality’ simpliciter.19 The possibilities posited by this notion can be seen,
by definition, to subsume the determinacy-theoretic possibilities and mathematical
possibilities. It follows that any possibilities in which the continuum hypothesis has
a different truth value, or in which there are more ordinals than there in fact are,
will automatically be broad possibilities. So principles about the structure of broad
necessity can have a direct bearing on the question of mathematical contingency and
vice versa.

In order to start theorizing about modalities we face a choice. If we assume a
certain thesis about the granularity of reality—roughly, that propositions, properties

18The case that metaphysical necessity is not as broad as determinacy can be made even with
respect to non-mathematical claims of vagueness, given the supervenience of the vague propositions
on the precise; see Bacon (2018a), Bacon (2018b).

19Certainly it has a better claim to this than the study of metaphysical necessity, given the remarks
above.
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and relations are individuated relatively coarsely, by provable equivalence in a mini-
mal system of higher-order logic called H—it is possible to give completely reductive
definitions of being a modality, being as broad as, and broad necessity. If we wish
to be neutral on the matter of propositional granularity, we appear to need another
primitive. A higher-order predicate, Nec, being a necessity, of type (t → t) → t, is
a natural primitive for this purpose.20 We will take the former route of pursuing a
logicist account of modality at the expense of neutrality of grain, but if you do not
accept this theory of granularity everything I say can in a precise sense be trans-
lated into the latter framework by disregarding our definition of ‘Nec’, and replacing
subsequent uses of it with the primitive.21

The system we will work in, Classicism, or simply C, is axiomatized in figure 2.
The language of Classicism is that of higher-order logic: it contains infinitely many
variables of each type, constants → of type t → t → t and ∀σ of type (σ → t) → t for
each type t, and complex terms are made exclusively by application and abstraction:
you can make a term (MN) of type τ from terms M and N of types σ → τ and σ, and
you can make a term λx.M of type σ → τ from a term M of type τ and a variable, x,
of type σ. The other logical operations—disjunction, existential quantification, and
identity at each type—can be introduced by definition in any of the standard ways,
and as usual we will write these in infix notation where appropriate, and suppress
λ when it appears after a quantifier. The first seven axioms and rules in figure 2
we shall call H, and encode a relatively neutral higher-order logic: it consists of the
standard axioms of classical logic for the quantifiers and truth-functional connectives,
and an axiom governing the behaviour of λ-terms. The Rule of Equivalence ensures
that the theory proves the claim that two propositions, properties or relations R and
S are identical whenever it can prove that R and S are coextensive.22 It is the last
rule that that distinguishes Classicism from more structured theories of granularity:
it implies, for instance, that being old and wise and being wise and old are the very
same property (λx.(Fx∧Gx) =e→t λx.(Gx∧Fx)) on account of their being provably
coextensive from the laws of classical logic.

Using the purely logical language of higher-order logic it is possible to say that a
given operator, X of type t → t, has a ‘normal modal logic’. Roughly, it is normal if
the smallest collection of propositions containing (i) the tautologies, (ii) closed under
modus ponens, (iii) containing the claim that X satisfies the normality axiom, and
(iv) closed under X-necessitation are all true. Because we can quantify into sentence
position we can state what it means for an operator to be closed under modus ponens
with a single generalization:

MP-Closed := λX.∀p(X(p → q) → Xp → Xq)

20One could instead take broad necessity as the primitive, an approach taken in Dorr et al. (2021).
However, by taking being a necessity as primitive we can provide a justification for the posit of a
broadest necessity, rather than imposing that assumption by fiat.

21The logicist account is spelled out in more detail in Bacon (2018a) and Bacon (2023a) chapter
7, and the theory with a primitive necessity predicate, Nec, in Bacon and Zeng (2022). The latter
shows that the theory Classicism used in Bacon (2018a) and Bacon (2023a) is interpretable in their
theory, and that their theory is indeed neutral about the granularity of reality.

22Other presentations of this system, with different axioms and rules, can be found in Bacon
(2018a) and Bacon and Dorr (forthcoming).
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PC A whenever A is a tautology.

UI ∀σF → Fa, where F : σ → t, a : σ

REF a =σ a

LL (a =σ b) → (Fa → Fb)

βη A → B where A and B are immediately βη equivalent.

MP If ⊢ A and ⊢ A → B, then ⊢ B.

Gen If ⊢ A → B, and x : σ does not occur free in A, ⊢ A → ∀σxB.

RE If ⊢ Px ↔ Qx, then ⊢ P =σ→t Q provided no variable in x is free in P or Q.

Figure 2: Classicism, C

Given a modal operator 2, we can similarly say what it means for a ‘collection’
of propositions, represented by an operator Y of type t → t, to be closed under
necessitation for 2: ∀p(Y p → Y (2p)).

Nec-Closed := λXY.∀p(Y p → Y (Xp))

We can then state that p is in the normal modal logic for 2 by saying that p belongs
to any collection of propositions that contains the tautology, is closed under modus
ponens and necessitation for X, and contains the claim that X is closed under modus
ponens (i.e. the K axiom):

InNormalModalLogicOf := λXp.∀Y (Y⊤ ∧MP-ClosedY ∧
Y (MP-ClosedX) ∧Nec-Closed(X,Y ) → Y p)

Definition 3.1 (Weak Necessity). An operator, X, is a weak necessity iff every
proposition in its ‘normal modal logic’ is true.

WNec := λX.∀p((InNormalModalLogicOfX)p → p)

The notion of a weak necessity is sufficient for applications of normal modal logic:
if one considers an interpreted propositional modal language in which ‘2’ is inter-
preted by a weak necessity, then every theorem of the smallest normal modal logic,
K, will be true. A weak necessity is not only normal but necessarily so with respect
to itself. In metaphysics, however, a stronger notion of necessity is in play: a true
necessity mustn’t be contingently normal with respect to any other kind of necessity.
A logically perfect agent’s knowledge may be normal, and known by them to be so,
but it is not usually physically necessary, say, that they are logically perfect; so this
agents knowledge is not a necessity in the operative sense.

Definition 3.2 (Strong necessity). An operator X is a strong necessity iff, for every
weak necessity Y , it is Y -necessarily a weak necessity.

Nec := λX.∀Y (WNecY → Y (WNecX))
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We can now spell out what it means for one necessity to be as broad as another:
there must be a strict implication from one necessity to the other. It would be
arbitrary to single out any particular necessity to articulate this strict implication,
so we require the implication to be strict in every possible sense. In fact, broadness
is a special case of the more general notion of entailment. In the below we write x
for a sequence of varibles x1...xn, σ for a sequence of type σ1...σn, and σ → τ for the
type σ1 → ... → σn → τ .

Definition 3.3 (Entailment). Given two relations, R and S, of type σ → t, R entails
S iff for every necessity Z, it’s Z-necessary that any things standing in R stand in
S.

≤σ:= λRS.∀t→tZ(NecZ → Z∀x(Rx → Sx))

We can also introduce ‘multi-premise’ entailment. If X of type (σ → t) → t rep-
resents a collection of propositions, properties or relations we say it entails another
proposition, property or relation R iff anything entailing everything in X entails R,
and we write this X ≤ R:

≤:= λXR∀S(∀T (XT → S ≤ T ) → S ≤ R)

Given two necessity operators, X and Y , we say that X is as broad as Y iff, X
entails Y , i.e. X ≤t→t Y .

We modeled our notion of a necessity on the idea of a normal modal operator. In
a normal modal logic one can prove that if some finite list of propositions, p1, ..., pn,
are each necessary, so is anything that they jointly entail. The analogous infinitary
principle, that anything entailed by an arbitrary collection of necessary propositions
is also necessary by contrast, cannot be proven from the principles of normal modal
logic.23 Arguably there are necessities, such as having an objective chance of 1, that
do not satisfy this further principle, so we do not build it in to our definition. At any
rate, we can specify this further property:24

Definition 3.4 (Infinitely closed necessity). A necessity, X, is infinitely closed iff,
whenever a proposition is entailed by the collection of all necessary propositions, that
proposition is also necessary: ∀q(X ≤ q → Xq).

Nec∞ := λX(NecX ∧ ∀q(X ≤ q → Xq))

Of course, for any necessity, X, there is another necessity X∞ defined as being a
proposition that is entailed by the X necessities: X∞ := λp.X ≤ p.

Proposition 1. If X is a necessity, its infinite closure X∞ is an infinitely closed
necessity operator.

Finally, we define broad necessity as being necessary in every sense of necessity

23If we add infinite conjunctions to propositional modal logic, this strengthening is valid in the
usual Kripke semantics, but not in variant semantics such as the topological semantics for S4, and
so is not derivable from K augmented with the logical laws governing infinitary conjunction.

24See Bacon and Zeng (2022) p160.
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Definition 3.5 (Broad Necessity). p is broadly necessary iff it’s X-necessary for
every necessity X

2 := λp.∀X(NecX → Xp)

In order to justify the title ‘broad necessity’ one must show that 2 does indeed
meet our criteria for being a necessity, and that it is as broad as any other necessity.
These are verified by the following theorem.25

Theorem 2. The following are theorems of Classicism

1. Nec2

2. Nec∞ 2

3. 2∀X(NecX → 2 ≤ X)

Next we list some theorems of Classicism that concern the logic of broad necessity.

Theorem 3. The following are theorems of Classicism or rules under which it is
closed:

K ∀tp∀tq(2(p → q) → 2p → 2q)

T ∀tp(2p → p)

4 ∀tp(2p → 22p)

CBFσ ∀σ→tF (2∀σxFx → ∀σx2Fx)

NEσ ∀σx2∃σy.x =σ y

Necessitation If A is a theorem of Classicism, so is 2A

Note that the first three axioms and Necessitation ensures the theorems of S4 for
2 belong to Classicism. The first three axioms straightforwardly fall out of the fact
that 2 is the broadest necessity. K is guaranteed by the fact that 2 is a necessity. T
follows from the fact that the truth operator (λp.p) is a necessity, and 2 is as broad
as it; 4 follows from the idea that the composition of two necessities is a necessity, so
that 2 must be as broad as λp.22p.

Some care is needed when interpreting the theorems CBFσ and NEσ of Classicism.
In this paper we concieve of the symbols ∀σ and ∃σ as devices of generalization. The
job description of a generalization, like ∀σx.Fx, is to express, in a single sentence,
something that without it could only be approximated with an infinite schema con-
sisting of the generalizations instances—formulas of the form Fa. It is this inference
from ∀σx.Fx to Fa in particular that is key in deriving CBFσ and NEσ. But these the-
orems are not so attractive when we instead read the first-order ∀e and ∃e in terms of
the ordinary quantificational idioms of English — words like ‘everything’, ‘something’
and ‘exists’. Read that way NEe tells us that everything necessarily exists (in any
sense of ‘necessarily’ you might choose). Many philosophers—contingentists—regard

25Proofs of all the theorems to follow may be found in Bacon (2023a) chapters 7 and 8.
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this is as obviously false. For these philosophers our ∀e and ∃e do not correspond in
any important sense to what exists. Nonetheless, contingentists usually have these
generalizating devices at their disposal under the guise of the so-called “outer” or
“possibilist” quantifiers. Often the outer quantifiers can be defined in terms of the
modal operators and the contingentists prefered quantifiers, but even if this is not
possible, they can also be introduced by stipulation via suitable introduction and
elimination rules. We’ll return to this issue in more detail in section 7; the main
point here is that contingentists should be understanding the ensuing discussion in
terms of these outer quantifiers.

4 Mathematical Necessity

This concludes our general theory of modality in higher-order logic. In order to apply
it to the present topic of mathematical modality and indeterminacy we must intro-
duce new non-logical operator constants to the logical language to stand for these
operations. I will use the symbol ■, and will read it as the relevant sort of mathe-
matical necessity or as determinacy depending on the application. For convenience we
will use the terms ‘mathematically necessary’ and ‘mathematically possible’ in a way
that is neutral between these interpretations. Call the language of pure higher-order
logic L, and the result of adding ■ to it L■.

We must, of course, assume ■ is a necessity. However, it seems plausible that
it is also closed under arbitrary logical consequences so we will make the stronger
assumption:

Mathematical Necessity Nec∞ ■

Let us call the result of adding Mathematical Necessity to Classicism C■.
Of course, “mathematical necessity” is a term of art, and it is certainly open to

someone to posit a notion of necessity that is not infinitely closed and attempt to
theorize about mathematical contingency in terms of that notion instead. But I think
the extra generality gained by weakening infinitary closure is minimal. No progress
will have been made if the continuum hypothesis, say, is technically mathematically
contingent, but the mathematical necessities still settle the continuum hypothesis, in
the sense that they either collectively entail it or entail its negation; the same goes for
any other claim about the width of the set-theoretic hierarchy. Thus on this picture we
shouldn’t care merely about contingency with respect to the mathematical modality,
but also about contingency with respect to the closure of mathematical necessity
under logical consequence, ■∞ defined as λp.■ ≤ p (recall proposition 1).26

26The two set-theoretic assumptions we make about ■ (outlined below) are either equally plausible
when made about ■∞ or follow from the original assumptions about ■, so someone insisting on
theorizing in terms of a notion of necessity that is not closed should take our uses of “mathematical
necessity” to be referring instead to the closure of their notion. These assumptions are: (i) that sets
are modally rigid, and (ii) that the axioms of set theory are necessary. It seems just as plausible that
sets should be modally rigid with respect to the closure of mathematical necessity as with respect
to mathematical necessity. The claim that the axioms of set theory of mathematically necessary
implies that the axioms of set theory are entailed (trivially) by mathematical necessities.
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A second point that is relevant here is that the infinite closure of ■ can in many
contexts be derived. For instance, on the interpretation of ■ as the determinacy op-
erator, one can derive infinite closure from the assumption that infinitary conjunction
is precise, and the assumption that applying precise operations to precise arguments
yields precise results (see Bacon (2020b) section III).27 Or, on the reductive interpre-
tations of ■ discussed next (e.g. as broad necessity), infinite closure is also derivable
by theorem 2.2 above.28

There is a long standing question for the modal extensibilists about the interpre-
tation of mathematical modality (see §2.3 of Studd (2013)). Øystein Linnebo simply
writes:

This is not metaphysical modality in the usual post-Kripkean sense. Rather,
the modality [...] is related to that involved in the ancient distinction be-
tween a potential and an actual infinity. (Linnebo (2013)p207)

But this tells us very little, and different authors have posited all sorts of modalities to
fill this role. Fine (2006), for instance, posits, an ‘interpretational’ modality, whereas
Scambler a dynamic one relating to the abilities of an ideal reasoner (Scambler (2021)
p1100). Studd (2013), rejects these proposals, and likens the mathematical modalities
more to tense operators, although does not find an interpretation he is fully happy
with. To my mind, these replacements offer no more clarity.

The present framework, however, has an alternative to offer, namely that the
relevant sort of necessity is just broad necessity. Any charge of unclarity here is
easily met, for the notion of broad necessity is as clear as the logical operations from
which it is defined — quantification and the truth-functional operations.

The Broad Necessity of Mathematics ■ =t→t 2

Under this hypothesis, the subsequent discussion would be greatly simplified. Nonethe-
less, there are some philosophical views we wish to remain neutral about that require
us to keep them separate. Clearly any mathematical possibility is possible in the
broadest sense, so it is the converse entailment that is at stake: is every broad possi-
bility mathematically possible? One might worry that broad possibility is too broad.
For instance, some authors have entertained the hypothesis that there is a notion of

27Hartry Field (Field (2003)) has suggested that rejecting the closure of the determinacy operator
under infinitary consequence is key to making sense of the paradoxes of higher-order vagueness,
which is relevant on that interpretation of ■. But this is not the only solution: Bacon (2020b)
provides a different route to avoiding those paradoxes which avoids the expressive challenges that
Field account faces (see also Priest (2010), Bacon (2015) §3.1).

28There is also a more local point to be made, namely that the results in this paper only rely on
infinite closure in a small number of places and these appeals can be replaced by a variety of other
plausible assumptions that would have the same effect. The only point this assumption is used in
section 5 is in the proof that if broad necessity satisfies the Barcan formula then ■ does too, and in
section 6 in the the proof that, given the Leibniz biconditionals, mathematical possibility is truth is
some mathematically possible world. Either of these weaker assumptions alone would then suffice
for the results in those sections. We mentioned already the assumption that ■ = 2 automatically
ensures the infinite closure of ■ due to the infinite closure of 2, but actually strengthening the
assumption that sets are rigid with respect to mathematical necessity to the same assumption with
respect to broad necessity would also suffice.

16



logical necessity in which even mathematical theories, such as ZF∈, could be con-
tingent.29 But the failure of our hypothesis above doesn’t rule out precisely defined
notions filling the roles that we care about. For instance consider:

2ZF := λp.ZF∈ ≤ p

2 ̸= := λp.∃tq(q ∧3q ≤ p)

The former builds in the necessity of ZF∈, whereas the latter the necessity of dis-
tinctness.30 The latter also has the virtue that it can be reductively defined in purely
logical terms, and even someone who believed in logical possibility could maintain
the necessity of ZF∈ with the force of 2 ̸=. Note that these reductive accounts of
■ are all infinitely closed necessities, and so in the presence of these identifications
Mathematical Necessity is redundant. Of course, one might also wish to maintain
that claims about the concrete realm are not mathematically contingent, in which
case even these reductions are not plausible.31 We will not take sides on any of these
issues—going forward we treat ■ as a primitive.

Once we have singled out a suitable closed necessity ■, we can formulate various
theses about the interaction of mathematical necessity with mathematical primitives.
Let us now add to the language of mathematical necessity, L■, a binary predicate
∈ of type e → e → t. Call the resulting language L∈■. Here we make only two
assumptions about the interaction of ■ and ∈. First, we will assume that it is
mathematically necessary that ∈ satisfies the axioms of higher-order ZF.

The Necessity of Set Theory ■ZF∈

As we noted before, this is compatible with the view that ZF∈ is logically contingent,
and so contingent in the broadest sense.

Second, we assume that sets are ‘rigid’ in the sense that they cannot gain or lose
members. We can require rigidity with respect to many different modalities. Rigidity
with respect to the broadest modality implies rigidity with respect to any weaker
modality. Since we wish to remain neutral about the extent of broad contingency—
perhaps there could be contingency about the make up of a set relative to some notion
of ‘contingency’—we will only require sets to be rigid with respect the mathematical
modality/determinacy operator ■. Here is how we say that a set, x, cannot gain
members: if any property, F , possibly applies to some member of x then there is in
fact a member of x to which F possibly applies (for otherwise x could have members
that are not among its actual members). Here is how we say that it cannot lose
members: if, for any property F , there is some member of x that is possibly F , then

29These ideas can be formulated precisely in the present higher-order framework of Classicism —
see, for instance, Bacon (2020a), Bacon and Dorr (forthcoming), Bacon (2023a) chapter 8. These
views generally imply that distinct individuals can be broadly possibly identical; on the other hand
the idea that distinct sets are mathematically possibly identical would cause trouble for the attractive
idea that it’s mathematically necessary which elements a set has. Using Set Rigidity, stated below,
one can prove by transfinite induction that sets are mathematically necessarily distinct (Lemma 23
in appendix A).

30See Dorr et al. (2021) and Bacon and Dorr (forthcoming).
31One reason we might want a notion of mathematical necessity like this would be to articulate a

modal sense in which mathematics is conservative over the concrete. See Dorr (2010).
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it’s possible that some member of x is F (for otherwise there is some actual member
of x that is possibly not a member of x). This means we want ∀e→tF (∃y ∈ x∧♦Fx ↔
♦∃ey(y ∈ x ∧ Fx)). This is essentially the dualized form of the Barcan formula for
the quantifiers restricted to ∈ x. In general we will define what it means for a relation
R : σ1 → ... → σn → t to be rigid as follows, writing x for a sequence of varibles
x1, ..., xn, Rx for Rx1...xn, ∀x for ∀σ1

x1...∀σn
xn, and σ → t for σ1 → ... → σn → t.

Rigid■ = λR∀σ→tS(■∀x(Rx → Sx) ↔ ∀x(Rx → ■Sx))

So we can now state our principle that sets are rigid:

Sets are Rigid ∀ex(Setx → Rigid■ λy.y ∈ x)

Rigidity here is stated with respect to ■, although there is a stronger notion of rigidity
stated in terms of broad necessity.

Observe that this principle is not the claim that the binary membership relation
is rigid: it is the claim that, for each set x, the unary property of belonging to x
is rigid. If membership were rigid there could be no contingency in the pattern of
membership claims. Note, too, that this principle is restricted to sets: it’s consistent
with this principle that a non-set, x, could become a set, in which case belonging to
x would not be rigid.32

Let me head off one potential confusion. If x is the set of all sets of rank α,
the claim Sets are Rigid implies that x cannot gain or lose elements. However, this
does not mean that there couldn’t have been more sets of rank α, it rather implies
that if there had been more sets of rank α x wouldn’t have contained them all. This
confusion becomes particularly tempting when we start using putative singular terms
like Vα or P (N) to refer to sets. Vα is not itself a term in the language of set theory,
it is really a definite description and so the property of belonging to Vα, λx.x ∈ Vα,
can fail to be rigid consistently with the principle Sets are Rigid.33.

One might think of our notion as a ‘vertical’ notion of rigidity: a rigid property
cannot change its extension from one mathematical possibility to a later one. There
is also a ‘horizontal’ notion of rigidity ruling out changes of extension between two
mathematical possibilities abreast of each other, which becomes relevant when ■ fails
to satisfy the convergence axiom: (♦■p ∧ ♦■q) → ♦■(p ∧ q).34 There is actually
broad agreement from both height and width extensibilists35 that the modal logic of

32A plausible strengthening of Sets are Rigid prefixes it with ■; given this strengthening belonging
to x, where x is a non-set, would have to become rigid once x is a set.

33Observe too that our principle entails that individuals with no members — the empty set and
urelements–necessarily have no members. It doesn’t quite imply that urelements are necessarily
urelements: for all we’ve said an urelement might become identical to the emptyset because the
system we are in does not rule out the necessity of distinctness

34According to the ordinary notion of rigidity defined above there could be two ‘divergent’ mathe-
matical possibilities where x is a set and has different extensions in both: perhaps, even, there is some
y such that ♦(Setx∧y ∈ x) and ♦(Setx∧y /∈ x). The rigidity of sets would ensure ♦■(Setx∧y ∈ x)
and ♦■(Setx ∧ y /∈ x), but without convergence this state of affairs is consistent. By contrast, if
every pair of mathematical possibilities recognize as mathematically possible a common mathemat-
ical possibility, rigidity ensures the extension of x is the same at the common possibility, and thus
is the same at the original pair.

35See, for instance, Hamkins and Linnebo (2022), Scambler (2021), Linnebo (2013) and Studd
(2013).
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Mathematical Necessity Nec∞ ■

The Necessity of Set Theory ■ZF∈

Set Rigidity ∀ex(Setx → Rigid■ λy.y ∈ x)

Figure 3: C■∈ adds these axioms to Classicism.

mathematical necessity is at least S4.2, which includes the convergence principle, so
we can treat this as something of a side issue. But if we are not assuming conver-
gence, then we might want to strengthen Sets are Rigid along these lines, and one
of our arguments (Theorem 7) will require this strengthening if convergence is not
assumed.36

We will call the system we get by adding these principles to Classicism C■∈.
The additions to Classicism are summarized in figure 3. Of course, theses we have
considered earlier can now be formulated precisely:

Forcing Possibilism ∃exy(POx ∧ y ∈ x ∧ x ⊩ A(x̂1, . . . , x̂n) → ♦A(x1, ..., xn))
when A(x1, . . . , xn) is a first-order formula of L∈.

Countabilism ∀ex(Setx → ♦∃ef : N → x(∀ezw(fz =e fw → z =e w)))

here f : N → x means that f is a function from N to x, POx states that x is a
partial order, and ⊩ is the forcing relation definable in the language of first-order set-
theory. These further principles will not be part of our neutral theory of mathematical
necessity and sets. As we pointed out earlier, Countabilism can be derived from
Forcing Possibilism. Note that Forcing Possibilism allows us to derive ‘metaphysical’
versions of famous independence results in the object language:

Contingency of CH ♦CH∧♦¬CH

The framework of C■∈ + Forcing Possibilism thus enables a thorough going modal
approach to independence proofs, letting us convert existing independence results
for metalinguistic claims about derivability into results about genuine mathematical
contingency.37

36If x is a possible set (x may or may not be an actual set) then a condition of its being horizontally
rigid is that if something possibly belongs to x it necessarily does so whenever x is a set. So in the
absence of convergence we can strengthen Sets are Rigid by adding the axiom: ∀exy(♦y ∈ x →
■(Setx → y ∈ x)). Given convergence and ■Sets are Rigid, this turns out not to be a strengthening
of our theory of mathematical modality. For if the principle were false, then we would have that for
some x and y, ♦(y ∈ x) and ♦(Setx ∧ y /∈ x). ■Sets are Rigid (and lemma 23) would let us then
prove that ♦■y ∈ x and ♦■y /∈ x, which is inconsistent using the convergence axiom.

37Strictly speaking, Forcing Possibilism lets us derive contingency from forcing arguments. A
strengthening of Forcing Possibilism for proper classes is needed, for instance, to accommodate
proper class forcing—although we need to be careful how we formulate it, as forcing with an ar-
bitrary proper class may not preserve the axioms of ZF. Note that not all independence results
can correspond to contingency claims — we will see later that C■∈ proves the non-contingency of
arithmetical statements, so that Gödelian arguments for the independence of certain arithmetical
statements from our modal mathematical theory will not correspond to any contingency. There is
something special about the method of forcing according to this.
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5 Brouwer’s principle and the Barcan formula

In this section and the next we’ll examine two questions: given the width contingency
hypothesis, what is the logic of mathematical necessity? and what are the implications
for the structure of modal reality more generally? We’ll begin in this section with two
key modal principles that might be thought to govern broad necessity: the Barcan
formula and Brouwer’s principle.

Consider a typical claim made by the modal extensibilist: that there could have
been more sets than there in fact are. There are two models you might have of
this possibility. The first maintains that there is a “constant” (i.e. non-contingent)
domain of individuals, and contingency about which sets there are is contingency
about which of those individuals are sets.38 The second model maintains that there
are no actual individuals that could have been the new sets: if there had been new
sets, then they would have been new individuals altogether.

The first model of set-theoretic contingency works well for the height extensibilist.
Essentially we are positing, in addition to the sets, a bunch of actual proper classes
that could have constituted a new layer of sets. But this model is not so good for
the width contingentist, because they are positing new subsets of things we already
recognize to be sets. Those new subsets cannot be characterized by properties we
already have access to, in actuality, because otherwise we could already obtain them
by the separation axiom, which lets us create subsets of sets we already have from
any condition. The problem is that once we have actual individuals hanging around
corresponding to those merely possible subsets, those individuals contain the informa-
tion we need to define those subsets: if x is a merely possible set of natural numbers,
say, we will show (theorem 7) that it is actually a set because we can still talk about
what would have belonged to x if it had been a set: {y ∈ N | ■(Setx → y ∈ x)}. The
rigidity of sets ensures that this is the same as the set x would have been if it had
been a set.39

It is worth emphasizing that this problem for the width contingentist can manifest
itself in a number of weaker logical settings. Consider, for instance, the contingentist
who prefers a weaker quantificational logic for quantificational words like ‘everything’
and ‘something’. For the contingentist, our generalizing devices that we have notated
∀e and ∃e correspond instead to what they call “outer quantifiers”, and their uses of
words like ‘everything’ and ‘something’ should be interpreted instead by restricting
our quantifiers ∀e and ∃e to things that exist. But it makes no difference to our
argument whether our merely possible set of natural numbers, x, exists in the outer
or inner sense: if we have some means of quantifying over it, then the information
about its possible membership conditions is accessible to us and we can construct the
set in question. On this picture the sort of contingency about what there is is radical:

38This model of indefinite extensibility is explored explicitly in Uzquiano (2015). But interestingly
it could also fit the theory of indefinite extensibility found in Linnebo (2013) and Studd (2013), when
we are explicit that ∀e means the outer quantifier: while these authors make claims to the effect
that new individuals can come into existence using their contingentist quantifiers, they typically also
appeal to modalized quantifiers under which the Barcan formula, discussed below, is valid under a
certain translation.

39It is here that we may need the stronger notion of rigidity in footnote 36, if we are not assuming
convergence.
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it involves contingency even about what possible things there are, as stated using the
possibilist/outer quantifiers.

Resuming our assumption that the quantifiers are classical (interpreting them as
outer quantifiers, if necessary), how do we articulate this idea of there being new indi-
viduals that don’t actually exist? A property, F , characterizes some merely possible
individuals if it’s possible for something to have had it, but no actual thing could
have had it. To say that there are no such properties is to say that there couldn’t
be any new individuals: ∀e→tF (3∃exFx → ∃ex3Fx). This principle (in its contra-
positive form) is often called the Barcan formula, BFe, and corresponds to the other
direction of CBFe (the converse Barcan formula). While CBFe tells us that things
can’t go out of existence, BFe says things can’t come into existence. As we noted in
theorem 3, CBFe is in fact a theorem of Classicism, whereas BFe is not. This repre-
sents a deep asymmetry in the logic of the classical quantifiers. (A similar asymmetry
persists even in the context of weaker quantificational logics: one can help oneself,
either through definition or otherwise, to wider outer quantifiers that have a classical
quantificational logic, but it’s consistent that even these classical quantifiers fail to
satisfy the Barcan formula. One might have thought that, just as we can introduce
quantifiers which validate the converse Barcan formula and the necessity of existence,
it should also be possible to introduce an even wider quantifier that is guaranteed
to satisfy the Barcan formula. But, unless one makes further assumptions about the
logic of broad necessity, it is not possible.40)

Now let us ask what implications all of this has for the logic of broad necessity.
Of course, if we are to admit the mathematical possibility of new individuals then
we should also admit the broad possibility of such individuals so we should expect
the Barcan formula to fail for both mathematical and broad necessity alike. Perhaps
more surprising is the fact that we must also reject the necessity of the Brouwerian
principle:

B ∀tp(p → 23p)

To deny this is to admit the possibility of truths that are possibly impossible in the
broadest sense of possible and impossible. Brouwer’s principle for broad necessity
is a part of the ‘orthodox’ package of views about modal reality, exemplified in,
for instance, Lewis (1986) and Stalnaker (1976), and in the explicitly higher-order
context Williamson (2013), Fritz (MS), and Goodsell and Yli-Vakkuri (MS). This
package usually comes along with the view that metaphysical necessity is the broadest
necessity, and its logic is S5. Of course, this picture holds that B is not only true,
but broadly necessary. This is equivalent to saying that truth entails being possibly
necessary:

B≤ λp.p ≤t→t λp.23p

40Related points are the subject of in progress work with Cian Dorr, Peter Fritz and Ethan Russo.
In the setting of Free Classicism (defined in appendix B) one can formalize and prove the claim that
if there is a classical quantifier it is unique, and anything behaving logically like a free quantifier is
provably a restriction of it. Nonetheless, while one can prove necessitism and the converse Barcan
formula for the classical quantifier in this context, one cannot prove the Barcan formula.
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Let us write C5 for the result of adding 2B, or B≤, to Classicism. C5 contains all the
theorems of the modal logic S5 for broad necessity.

In order for there to be contingency about what individuals there are, in the
widest possibilist sense of there are, there must be contingency about what is possible,
and this is essentially what Brouwer’s principle rules out. Why is this so? The
usual model theoretic explanation of this rests on a certain possible worlds model
theory in which worlds are possible relative to other worlds, and the Brouwerian
principle corresponds to the symmetry of this relation of relative possibility.41 If one
world, w, considers another world, v, to be possible and to contain individuals in
its domain that do not belong to ws domain, then every world possible relative to
v must contain those individuals (since individuals exist necessarily). This means
the original world w cannot be possible according to v, so the relation of relative
possibility is not symmetric. In short, Brouwer’s principle lets you look backwards
and this is problematic for the width contingentist, since (putting it very informally)
it lets you ‘send information back’ about the membership conditions for subsets of
the natural numbers in the form of the individuals that are those subsets there.

This explanation is unsatisfactory due its reliance on a particular model theory,
as well as possible worlds assumptions that we will have reason to question shortly.
Our job in the rest of the section is to make all of the above reasoning precise. First,
we will give a straightforward object language argument (due to Arthur Prior) that
Brouwer’s principle for the broadest modality implies the Barcan formula for the
broadest modality. Then we will show that the Barcan formula for broad modality
implies the Barcan formula for the mathematical modality. Finally, we will show
that the Barcan formula for the mathematical modality lets us prove that Vα is rigid
for each ordinal α, ruling out width contingency. For the reasons outlined above,
we cannot prove in an analogous manner that V is rigid: there can be contingency
about which things are sets, there just cannot be contingency about which things are
subsets of the sets we already have—all such contingency comes from the height and
not the width of the universe.

Let us begin by explaining Prior’s derivation of the Barcan formula for broad
necessity from Brouwer’s principle for broad necessity.42 The Barcan formula says:

BFe
2 ∀e→tF (∀ex2Fx → 2∀exFx)

We will argue contrapositively, and show that if there is a property only applying
to new/merely possible individuals, then there could have been be a truth which is
possibly impossible. F characterizes merely possible individuals if there could have
been F s but there is nothing which could have been F . There are two possible cases:
either the true claim that nothing is possibly F is itself possibly impossible, in which
case we have a truth that’s possibly impossible. Or else it’s not, so that it’s necessarily
possible that nothing is possibly F . This means (given the necessity of existence) that
there couldn’t have been something that is necessarily possibly F . But there could
have been an F , which means that the claim that that thing is F is not necessarily

41See Cresswell and Hughes (1996) pp17-21.
42I offer an informal argument below, the formal version of this proof is found in Prior (1967)

p146 and attributed to E.J. Lemmon. It is based on an earlier argument due to Prior (1956).
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possible — i.e. is possibly impossible. In the latter case, the truth that is possibly
impossible is a merely possible truth.

This style of argument can be run at any type whatsoever. In fact, we appealed
to nothing special about broad necessity in this argument. For any necessity, X, let
us write BFσ

X and BX for the Barcan formula and Brouwerian principle concerning X
(i.e. ∀σ→tF (∀σx.X(Fx) → X(∀σxFx)) and ∀tp(p → X¬X¬p)). Prior’s argument
establishes that, for any necessity whatsoever, the X-necessity of Brouwer’s axiom
for X, i.e. XBX , implies the Barcan formula for X, BFσ

X . So to summarize:

Theorem 4 (Prior).

1. C proves ∀X(NecX → XBX → BFσ
X)

2. C5 proves BFσ
2.

If mathematical contingency requires failures of BFe
2, as we have been suggesting,

it means we must reject the orthodox logic of C5. To complete this line of argument,
we next need to establish that the Barcan formula for broad necessity implies the
Barcan formula for mathematical necessity. Intuitively, if there couldn’t be new
things in the broadest sense of ‘could’, then there couldn’t be new things in any
more restrictive sense. One might näıvely take this to mean that the broad Barcan
formula implies the Barcan formula for any modality whatsoever. But this is not
quite true. Some counterexamples to the Barcan formula have nothing to do with
the possibility of new individuals, but to do with the failure of the necessity to be
closed under infinite conjunctions. For every individual there’s a chance of 1 that if
it’s a point on the dartboard the dart won’t land on it, but it doesn’t follow that
there’s a chance of 1 that the dart won’t land on any point on the dartboard; so
if having chance 1 is a necessity, it doesn’t respect the Barcan formula irrespective
of the status of the broad Barcan formula. However, the Barcan formula for broad
necessity implies the Barcan formula for any necessity that is infinitely closed. It
follows, too, that Brouwer’s axiom for broad necessity implies the Barcan formula
for every necessity that is infinitely closed. We summarize this with the following
theorem of the orthodox system C5

Theorem 5.

1. BFσ
2 → ∀X(Nec∞ X → BFσ

X)

2. In C5, ∀X(Nec∞ X → BFσ
X)

The proof is included in appendix A. As a straightforward corollary, we see that
the behaviour of mathematical modalities and determinacy are tightly constrained
by the behaviour of broad necessity:

Corollary 6 (C■). 2B implies BFσ
■ and BFσ

2 implies BFσ
■.

Now, finally, we will show that Barcan for ■ (and thus Barcan for 2, and Brouwer
for 2) entails the rigidity of Vα, and that the rigidity of Vα in turn refutes the various
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width contingency hypotheses we were interested in, such as the indeterminacy of the
continuum hypothesis and countabilism.

The first-order of business is to define the property Vα: being a set whose rank is
no greater that α. This is done by transfinite recursion:43

V0 := λx.⊥

Vα := λx∀y(y ∈ x → ∃β ∈ αVβy).

Where α is an ordinal (i.e. a transitive set that is totally ordered by membership:
∀ββ′ ∈ α(β ̸= β′ → β ∈ β′ ∨ β′ ∈ β)). It is usual in set-theory texts to use Vα as a
name for a set, whereas here it is a predicate. Our choice discourages the temptation
to think of Vα as automatically rigid in virtue of being a set, as we earlier cautioned
against.

The claim that there is no contingency about the width of the universe, then, is
the claim that for every ordinal α, Vα is rigid. Note that everything we say here is
entirely consistent with height contingency: for all we say, there could be new ordinals
γ and as a result new sets belonging to Vγ .

Theorem 7 (C■∈). Given BFe
2 (for broad necessity), being of stage α (i.e. Vα) is

rigid for every ordinal α.

What is going on here? Given the Barcan formula, the only way there could be
‘new’ sets is if there are already individuals hanging around that could have been
those new sets. Thus we arrive at the ‘first model’ mathematical contingency, where
there is a modally constant domain of individuals containing a whole bunch of non-
sets, and the contingency concerns which of those individuals are sets. As we pointed
out earlier, this model of set-theoretic contingency is unfriendly to width contingency;
the argument in the appendix A essentially takes that informal reasoning and makes
it precise.

The significance of this result is that, for any ordinal α, there cannot be new sets
of rank α. Among other things, this implies the non-contingency of the continuum
hypothesis, and thus its determinacy on one way of reading ■. For in order for it
to be indeterminate whether the continuum hypothesis is true one has to introduce
new sets with small ranks (ω + n for finite n): new sets of natural numbers, or new
bijections between sets of reals and reals. One can similarly refute countablism: if
there is no injection from N to x then this fact is necessary, for there cannot be any
new injections given BFe

2. To make these remarks precise we introduce some useful
concepts and propositions, which are proven in appendix A.

I will say that a formula of first-order set-theory is absolute with respect to a
transitive model M and class C of transitive models N ⊇ M extending M iff (i) when
it is satisfied by some elements of M it is also satisfied by those elements in any
member of C, (ii) if it is not satisfied by those elements in M it is not satisfied by
them in any extension in C. This has an obvious modal analogue:

43This can be made into an explicit definition in the usual way Vγ = λx(∀Y (∀y¬Y 0y∧∀α(Ordα∧
∀y∀β ∈ α(y ⊆ Y β → Y αy)) → Y γx).
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Definition 5.1 (Modal Absoluteness). A formula A(x, y) is modally absolute iff the
formulas

� ∀ex(Setx ∧A(x) → ■Ax)

� ∀ex(Setx ∧ ¬A(x) → ■¬Ax)

are both true, where x is short for a sequence of variables x1...xn, and Setx is short
for the conjunction Setx1 ∧ ... ∧ Setxn.

A sufficient condition for a formula of first-order set-theory to be absolute is if all of
the quantifiers in the formula are restricted by formulas that are not only absolute, but
do not change their extensions across models. The modal analogue of this stronger
property is rigidity. In the present higher-order setting, we can similarly define a
class of first-order sentences that are provably modally absolute: the smallest set of
sentences containing x ∈ y and containing ¬A, A ∧B, ∀ex(C → A) whenever A and
B are in the set, and C is a rigid property of sets (Rigid■(λx.C) and λx.C ≤e→t Set
are true).

Theorem 8 (C■∈). Suppose A(x) is a first-order set-theoretic formula with free
variables x. If all the quantifiers in A(x) are restricted to rigid properties of sets,
then A is modally absolute.

The proof of this theorem is provided in the appendix. In practice we could
dispense with the metalinguistic notion of modal absoluteness: cases where we apply
theorem 8 to a particular formula A(x) can be replaced by proving in the object
language the two formulas in definition 5.1 from the assumption that the relevant
predicates are rigid (those restricting the quantifiers in A). But we need the concept
to state theorem 8, and the theorem provides useful perspective on what we are
actually doing when carry out an argument that a particular formula is modally
absolute because it is general, whereas these particular arguments are not. There too
the metalinguistic ascension is often dispensible, and harmless.

Given theorem 8 and Set Rigidity, any formula that’s provably equivalent to one
whose quantifiers are all restricted by set membership will be modally absolute. This
lets us derive the following useful facts:

Theorem 9 (C■∈). For any ordinal α, the following conditions are modally absolute.

1. being an ordinal less than α.

2. being a limit ordinal less than α.

3. being the smallest limit ordinal, the successor of the smallest limit ordinal, the
successor of the succcessor of the smallest limit ordinal...

moreover, the properties in 3. are rigid.

Note that while the property of being an ordinal is modally absolute, it needn’t be
rigid: every ordinal is necessarily an ordinal, but we have not ruled out the possibility
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of there being further ordinals, in agreement with our previous claim that these results
are compatible with height contingentism.

Let us say that a first-order set-theoretic sentence is arithmetical if all the quan-
tifiers in the sentence are restricted by the predicate ‘belongs to the smallest limit
ordinal’. Notice that theorems 9.3 and 8 immediately imply arithmetical sentences
are non-contingent in our background theory C■∈.

Corollary 10 (C■∈). ■A ∨■¬A is derivable in C■∈ for any arithmetical sentence
A

Thus if there is set-theoretic contingency, it is not to be found in the arithmetical
statements of set-theory. We return to this asymmetry in the appendix.

While the non-contingency of arithmetic is unavoidable given our minimal back-
ground system, more interesting mathematical claims, like CH, can be contingent.
However, another corollary of the above is that in the presence of BFe

2 or 2B, even
this sort of contingency disappears.

Corollary 11 (C■∈).

1. BFe
2 → ■CH ∨■¬CH.

2. BFe
2 → ∀ex(Uncountablex → ■Uncountablex)

where Uncountablex := ∀ex(∀ef : N → x¬ Injection f)

The consequents of these conditionals are thus outright theorems of C5:

Corollary 12 (C5■∈).

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

Thus The Contingency of CH and Countabilism are inconsistent in C5. The reason
this is true, roughly, is that CH is about sets of rank Vω+2: it’s equivalent to a formula
whose quantifiers are restricted to Vω+2. But given the modal absoluteness of Vα and
of ω + 2 (proven above) it follows by theorem 8 that CH is modally absolute. Note
that the modal absoluteness of CH implies CH → ■CH and ¬CH → ■¬CH, so
■CH ∨■¬CH follows from an instance of excluded middle.

More generally, by theorem 7, any set theoretic statement that is equivalent to a
sentence that can be formulated using quantifiers restricted to Vα for some α will be
determinately true or false, and non-contingent in other senses of contingency. Thus
these arguments extend straightforwardly to other contentious axioms of set theory
such as the generalized continuum hypothesis up to some cardinal κ, Martin’s axiom
for partial orders up to cardinality κ, and so on. They do not extend to claims about
the ‘height’ of the universe, such as large cardinal hypotheses.

Might one take this to be an argument against width contingency? We certainly
do not have anything like a straightforward logical reductio of width contingency, for
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Classicism on its own includes neither the Barcan formula or Brouwer’s principle, and
there very are natural models in which they fail.44

Theorem 13. The following are not theorems of Classicism

B ∀tp(p → 23p)

5 ∀tp(3p → 23p)

BFσ
2 ∀σ→tF (∀σx2Fx → 2∀σxFx)

One might, however, still see an objection to width contingency here. After all,
isn’t S5 in some sense the standard logic of necessity? I am not persuaded. If there
ever was an implicit decision within the philosophical community about which logic of
necessity is ‘standard’ it happened before mathematical modalities and determinacy
operators were being discussed widely, and most likely was made with Kripke’s notion
of metaphysical necessity in mind. The failures of Brouwer’s principle posited here are
entirely compatible with its holding for the more restricted notion of metaphysical
necessity. It follows too that the Barcan formula may be valid for metaphysical
necessity, and that the continuum hypothesis is either metaphysically necessarily
true or necessarily false. And this too is entirely compatible with our diagnosis of the
continuum hypothesis as indeterminate and thus contingent in the broadest sense (in
this case, then, it will be indeterminate whether CH is a metaphysical necessity or
impossibility). When it comes to positive arguments for the S5 principle, they are
thin on the ground. Some considerations are abductive, and come from the relative
simplicity and power of S5—the only schemas of propositional modal logic it doesn’t
imply are clearly invalid, whereas S4 leaves the validity of many modal principles
open.45 But of course, nobody thinks that the theoretical virtues of simplicity and
power can outweigh the countervailing virtue of truth—after all ⊥ is simple and very
powerful. The theorist already convinced of the indeterminacy of the continuum
hypothesis may find much less mileage in these abductive considerations. Other
arguments for the S5 principle are far less compelling, for they often appeal to the
model theory of modal logic in a patently illegitimate way—e.g. appealing to the
idea that to be the broadest necessity it must quantify over ‘all’ possible worlds in
some set-theoretic model, without taking into account that in the intended model
(if there is one!) what worlds in the model represent genuine possibilities could well
be contingent.46 Finally, we should also emphasize that broad necessity, as it has
been introduced here, is not necessarily a notion we had pretheoretically—intuitions
about how it should behave should be taken with a generous pinch of salt, and it is

44Several sorts of models are described in the appendices to Bacon (2018a) and Bacon and Dorr
(forthcoming) and in chapter 18 of Bacon (2023a).

45Several broadly abductive arguments are made in Williamson (2013). Scroggs (1951) shows that
the only modal logics extending S5 contain schemas to the effect that there are only n possibilities,
for some finite n. Fine (1974) shows there are continuum many modal logics extending S4.

46See Bacon (2018a) §5.4 for a critical discussion of these arguments. The point here is that the
mathematical objects of the relevant model that in fact are representing genuine possibilities may
not represent genuine possibilities had things been sufficiently different. We should also keep track
of the fact that if there is mathematical contingency, the model itself might change its mathematical
structure.
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generally better to simply work with its formal definition, being necessary for every
necessity, and see where our philosophical theorizing takes us.

6 The Leibniz Biconditionals

Let us now turn to another pervasive idea in modal metaphysics, the notion of a
possible world. Possible worlds can be wielded as a purely model theoretic tool for
establishing metalogical properties like consistency and invalidity in modal languages.
In a model of a modal language sentences might be interpreted by arbitrary sets of
possible worlds, and these might serve as the domain for quantifiers binding sentence
variables if the language has them. In the present higher-order setting, this ensures
various theorems of Classicism are valid—Boolean identities, like ∀tpq((p ∧ q) =t

(q∧p))—but also ensures validities beyond Classicism. Because there are propositions
modeled by the singleton of a possible world, {w}, every consistent proposition is
entailed by one of these special world propositions, leading to distinctive validities.
World propositions are special because they are either fully contained or disjoint from
any other set of possible worlds.

However, metaphysicians often take possible world talk to be more than a mere
model theoretic tool. Someone taking the possible world model of propositions meta-
physically seriously should believe that these special world propositions exist.47 Given
our previous observation that singletons are consistent, and contained or disjoint from
(i.e. contained in the complement of) any other proposition, we will adopt the fol-
lowing definition of a world proposition:

World = λw.(3w ∧ ∀tp(w ≤t p ∨ w ≤t ¬p))

World propositions are broadly possible propositions such that any other proposition
is either entailed by it or inconsistent with it. The latter condition ensures that worlds
settle all questions. The possible world metaphysician ought, then, to subscribe to
the Leibniz Biconditionals: that something is possible if and only if it is entailed by
a world proposition.

LBt ∀tp(3p ↔ ∃w(Worldw ∧ w ≤t p))

As with Brouwer’s principle, we might also consider the necessitation of the Leibniz
biconditionals, 2LBt. The necessitation is stronger and equivalent to the claim that
being possible is the same as being true at a possible world—a claim which might
be thought to better capture the idea that possibility can be analyzed in terms of
possible worlds:

LBt= 3 =t→t λp∃w(Worldw ∧ w ≤t p)

47Whether world propositions simply are possible worlds, as Prior and Fine maintained (Prior
and Fine (1979)), or simply guaranteed by the existence of possible worlds will not be important
in what follows. Once you have taken enough possible world machinery seriously, including notions
like possible world and true at, then for any world w, there is the proposition that every proposition
true at w is true simpliciter. Propositions of this form can play the role of world propositions in
what follows.
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It is worth noting that the possible worlds metaphysics encoded in LBt is a substantive
further commitment—it is not already a theorem of Classicism. Indeed, it doesn’t
follow from the Barcan formula, or even the Brouwerian axiom.48

Theorem 14. LBt is not a theorem of C5.

I have here brushed over an important choicepoint that arises in contexts where
the propositional Barcan formula, BFt

2, fails. In this setting there could be ‘new’
questions concerning the truth of propositions that do not in fact exist: in that case,
we might want to consider a strengthening of our definition of World ensuring that
worlds necessarily settle all the questions, even new ones. This strengthening can be
obtained by prefixing a 2 to the second conjunct in our definition: a strong world is
possible and necessarily settles every question.49

SWorld := λw.(3w ∧2∀tp(w ≤t p ∨ w ≤t ¬p))

Anything that’s a strong world is a world, and the result of replacing world with strong
world in LBt yields a strengthening we will call the Strong Leibniz Biconditionals:50

SLBt ∀tp(3p ↔ ∃w(SWorldw ∧ w ≤t p))

I myself am of the view that stronger notion of world better fits the notion at issue
in possible world metaphysics. But since the results I prove here do not need the
full strength of the strong Leibniz biconditionals, I’ll work with the weaker notion in
this section. Theorems we prove later from the Leibniz biconditionals thus can also
be proven with the strong Leibniz biconditionals so that nothing turns on our choice
about how to define world.

Like other principles we have encountered, such as the Barcan formula, there are
generalizations of the Leibniz biconditionals to other types. For instance, a property
theoretic version states that a property is possible (i.e. possibly instantiated) iff it is
entailed by a world property. In general:

LBσ ∀σ→tR(3σR ↔ ∃σ→tW (Worldσ W ∧W ≤σ→t R))

where these notions are defined as follows.

Definition 6.1. Let x be a sequence of variables x1...xn of types σ = σ1, ..., σn.

3σ := λR3∃xRx

¬σ := λRλx¬(Rx)

Worldσ := λW (3σW ∧ ∀σ→tS(W ≤σ→t S ∨W ≤σ→t ¬σ→tS))

48See the first model described in appendix D of Bacon and Dorr (forthcoming).
49See Bacon (2023a) chapter 7.
50The right-to-left direction of LBt is in fact a theorem of Classicism, since anything entailed by

a possible proposition (such as a world proposition) must be possible. The left-to-right direction of
LBt follows from SLBt, for if p is possible it is entailed by a strong world it is entailed by a world,
since every strong world is a world.

29



For those used to thinking in the possible worlds framework, an intension of type
e → t (i.e. a function from worlds to extensions) is a world property at a given world
w if it has a non-empty extension at exactly one world that’s possible relative to w,
and at that world its extension contains exactly one individual. Thus LBe→t is valid
in model theories where the second-order quantifiers range over arbitrary functions
from worlds to extensions.

I take it that the Leibniz biconditionals are also part of the ‘orthodox’ view about
modal reality, found in, for instance, Lewis and Stalnaker.51 We are now in a position
to state our second connection between width contingency and the structure of modal
reality:

Width contingency requires possible failures of the Leibniz biconditionals.

What implications do the Leibniz biconditionals have for mathematical modalities?
Firstly we can show that if something is mathematically possible then it is true at a
mathematically possible world.52

Theorem 15 (C■). Given LBt, ♦p ↔ ∃w(Worldw ∧ w ≤ p ∧ ♦w)

Since C■ only adds to Classicism the assumption that ■ is an infinitely closed
necessity, it is a quite general theorem of Classicism with the Leibniz biconditionals
that for any infinitely closed modality, X, a proposition is X-possible iff it is true at
an X-possible world. (It does not hold for necessities that are not infinitely closed.
Supposing, again, that having chance 1 is a necessity, then one can have chance-
possible propositions that are not true at any chance-possible world propositions.
For instance, its chance-possible that our dart hits the dartboard, because it has
non-zero chance. But each broadly possible world where it hits the dartboard has
chance 0, since a broadly possible world will settle the exact point that that the dart
lands.)

We can now prove that the Leibniz biconditionals imply the rigidity of each stage
of sets.

Theorem 16 (C■∈). LBt→t and LBt imply that Vα is rigid for every ordinal α.

There is a way of glossing this argument with quantification over ‘possible sets’,
which is strictly speaking inaccurate but which nonetheless gives an intuition for what
is going on. The idea is to find, for any possible set, x, a world property W that
applies to just that set. From W we can define an actual set, y, containing just those
actual things that would have belonged to the W set, if W had been instantiated.
Now the members of y are all of lower rank, so we may assume for induction that
the actual sets of that rank are in fact the only possible sets of that rank, so x and y
have the same members, are identical, and thus that x actually exists. The proof in
appendix A is essentially an attempt to make this informal idea precise without any
illegitimate quantification.

51They are explicitly postulated, or derived, in the theories of Williamson (2013), Fritz (MS),
Goodsell and Yli-Vakkuri (MS).

52Unless otherwise stated, proofs of all numbered theorems and propositions to follow may be
found in appendix A.
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As before, we can obtain as two straightforward corollaries from the rigidity of
Vα, the determinacy of the continuum hypothesis and the necessity of uncountability
(and so a refutation of Countabilism).

Corollary 17 (C■∈).

1. LBt ∧ LBe→t → ■CH ∨■¬CH.

2. LBt ∧ LBe→t → ∀ex(Uncountablex → ■Uncountablex)

Corollary 18 (C■∈LBσ).

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

Observe that our proof rested not only on the existence of world propositions, but
also on a slightly less familiar consequence of näıve use of the possible worlds frame-
work — the existence of world properties. The propositional Leibniz biconditionals
do not appear to entail the property Leibniz biconditionals. In light of this, I offer
another route to the property Leibniz biconditionals using a strengthening of the ax-
iom of choice. An ordinary second-order choice principle can be formulated by saying
that the universe of individuals can be well-ordered. By necessitating this principle
we ensure that there is a well-order of the universe at every possible world, although
it might witnessed by ‘new’ well-orders—that is to say, a world w might entail that
there is a global well-order, while there is no relation such that w entails that it is a
global well-order. The strengthening of necessitated choice we will investigate is the
idea that for each world, there is a relation which that world entails to be a well-order

Strong Modal Choice ∀tw(Worldw → ∃e→e→tRw ≤ WOR)

With this principle we can close the gap between the propositional and property
Leibniz biconditionals.

Theorem 19 (Classicism). Strong Modal Choice and LBt entail LBσ→t.

It should be noted that there could be width contingentists who reject the necessity
of the axiom of choice on the grounds that it, like the continuum hypothesis, is
indeterminate or mathematically unsettled. This would, of course, be grounds to
reject the stronger principle of De Re Modal Choice. However this is a minority view,
and most mathematicians take the axiom of choice to be settled and in as good a
standing as other principles of set theory. The necessity of choice is validated, for
instance, in the modal logic of forcing, where 2 is interpreted as meaning truth in all
generic forcing extensions, since the truth value of the axiom of choice (unlike CH)
is preserved in generic extensions.
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7 Free logic

Our theory C■—Classicism plus the claim that ■ is a necessity that is closed un-
der infinitary consequence—has lead us to some striking results. First, Classicism,
in virtue of being closed under classical quantificational logic and necessitation for
broad necessity, proves the broad necessity of existence, NNEe, and a closely related
principle, CBFe. Second, supplementing Classicism with the principles of S5 for the
broadest necessity lets us derive the non-contingency of the set theoretic universe
up to a given stage given some modest assumptions of modal set-theory. Third,
supplementing Classicism with the Leibniz biconditionals lets us do the same.

Could the lover of width contingency restore orthodoxy in the second and third
respects, by rejecting it in the first respect? That is, could they retain S5 and the
Leibniz biconditionals by weakening quantificational logic and adopting instead a
free logic for the quantifiers? Unlike in classical logic, it is not possible to derive the
necessity of existence or the converse Barcan formula in free logic. Moreover, the
Prior-Lemmon proof of the Barcan formula within S5 is not sound in free logic. In
short, things can come and go into existence freely once classical quantificational logic
is weakened, giving us more options for making sense of mathematical contingency
about which sets exist. We earlier stipulated that in this setting one should read the
symbols ∀σ in terms of the outer quantifiers. But one might wonder whether it is
possible to also reject outer quantifiers in the free logical setting, thereby avoiding
these results?

Classicism individuates propositions, properties and relations by provable equiv-
alence in classical higher-order logic. So in order to explore this idea, we should look
into the parallel theory that individuates entities instead by provable equivalence in
free logic. That is we weaken the quantificational axioms of H along the lines of a
free logic and close under the rule of equivalence. Call this system Free Classicism, or
FC—it is defined in appendix B. Within this framework one can provide definitions
of broad necessity and other notions of section 3. Strengthening this system with
the principles of S5 and the Strong Leibniz Biconditionals yields the system being
proposed, which we can call FC5(SLB). The reader can find the details in appendix
B.

There is a vast literature on the topic of contingent existence in the framework
of higher-order logic that I will not attempt to contribute to.53 I will limit myself
instead to a couple of local points about its application to mathematical contingency.

First recall that width contingency seems to require at least the possibility of new
individuals, so that in a S5 setting we must also reject the necessity of existence.
For if there could have been new individuals, then, according to Brouwer’s principle,
there would have been a possibility (namely actuality) where those new individuals
didn’t exist. We must, furthermore, reject the necessity of existence not merely for
concrete individuals but for mathematical objects like sets.

There are some general reasons to think that sets exist of mathematical necessity,
that are quite independent of the issue of necessary existence for concrete objects and

53See Fine (1977), Williamson (2013), Stalnaker (2012), Fritz and Goodman (2016), Fritz (2018a),
Fritz (2018b).
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other sorts of mathematical objects. There is a pervasive—and I think independently
attractive—idea that a set is determined by its members. This idea is articulated
in various ways in contemporary philosophy — sometimes it is the idea that the
existence of a set is completely grounded in the existence of its members, or that a
set is ‘nothing over and above’ its members.54 According to this idea, while a set
could fail to exist at a world if one of its members fails to exist, if all of its members
at that world exist, the set itself must exist. More generally, if a proposition (a world
proposition or otherwise) entails the members of x exist it must also entail x exists:

∀ex(Setx → ∀tp(∀ey ∈ x(p ≤ ∃ez.z = y) → p ≤ ∃ez.z = x))

If the proposition p is tautologous, we can infer that if the members of a set necessarily
exist, then so does the set

∀ex(Setx → ∀ey ∈ x2(∃ez.z = y) → 2(∃ez.z = x))

We can prove the necessary existence of sets as follows. Suppose that there is a set,
x, that doesn’t necessarily exist. By the well-foundedness of membership, we may
assume without loss of generality that x is a possible non-existent of minimal rank, so
that all of its members necessarily exist. But then we have a contingently existing set
whose members necessarily exist. Assuming the necessity of our principles about set
existence, and the well-foundedness of membership, this reasoning can be necessitated
so necessarily every set necessarily exists.

One might think that these sorts of thoughts are antithetical to various brands of
potentialism about sets. For instance, the height potentialist will typically maintain
that there are some pluralities—e.g. the non-self-membered sets—which do not form
a set but which could have done. Note, however, that our argument only applied to
things which already form a set: if x is a set then it couldn’t have gone out of existence
without at least one of its members going of out existence. The potentialist picture
is entirely consistent with this because the new set collating a previous non-set-sized
plurality of things is not already a set.

There is a more elementary argument for the necessary existence of sets that
specifically targets the width contingentist: that any set x ⊆ Vα necessarily exists, for
any given α. The separation axiom, along with the assumption that the ZF axioms
are mathematically necessary, ensures that for any condition, A(y), it’s necessary
that there is a set containing all and only the individuals y such that A(y). Now,
for any set x we have the condition y ∈ x. So, it’s mathematically necessary that
there is a set containing all and only the y belonging to Vα such that y ∈ x, i.e.
{y ∈ Vα | y ∈ x} necessarily exists. Now one might object that this fails to establish
the necessary existence of x, because as soon as x fails to exist it has no members,
and so {y ∈ Vα | y ∈ x} is the empty set. This would contradict the mathematical
rigidity of sets, and so we may already want to insist that even non-existent sets
contain traces of their members. But even if we grant the objection, the potentialist
we are considering accepts a logic of S5 for broad necessity, and believes in world

54See Fine (1994). Roberts (2022) also articulates precisely the related idea that pluralities are
nothing over and above their members. The idea that sets are grounded in their members is ubiq-
uitous in the grounding literature: see, for instance, Fine (2012) section 4, or Berker (2018).
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propositions, and so can introduce the set as follows. First, let w be the true world
proposition. Then we have:

It’s mathematically necessary that there is a set containing all and only the y
belonging to Vα such that w ≤ (y ∈ x): {y ∈ Vα | w ≤ (y ∈ x)}.

In the context of C5 w ≤ behaves essentially like an actuality operator, letting us
talk about the actual membership conditions of x at any world, so that by separation
x must exist at every world.

There are further moves that certain sorts of higher-order contingentists might
make at this juncture: perhaps the property of belonging to x, λy.w ≤ (y ∈ x), fails
to exist whenever x fails to exist. But this move doesn’t really help: in order to retain
classical propositional logic, these contingentists must draw a distinction between the
satisfaction conditions of an open formula and the predicate you obtain from it by
λ-abstraction. The open formula w ≤ (y ∈ x) still lets us classify every set as either
satisfying it, or not, and so the separation axiom lets us prove that that there is a set
of sets of any given certain rank belonging to x.55

My second point relates to the fact that one can introduce ‘outer-quantifiers’ in
Free Classicism and read the previous results in terms of those outer quantifiers.
Now there are independent motivations for positing outer quantifiers. They let the
contingentist meet various expressive challenges that appear to beset their view. They
have introduction and elimination rules that pin down their inferential role uniquely
(see Harris (1982)), so they could be introduced directly as new primitives. In some
contexts, however, it is impossible to avoid outer quantifiers because they can be
defined explicitly in terms of the contingentists quantifiers and modal operators—it
turns out that S5 with the Leibniz biconditionals is one of these contexts.

For instance, if we have an actuality operator and I want to say that every possi-
ble individual is F I can say ‘necessarily, everything is F in actuality’. The formula
2∀ex@Fx thus simulates “possibilist quantification” over all possible individuals pro-
vided at the actual world. While this paraphrase is materially adequate, this fact is,
of course, highly contingent: had different things been F , that paraphrase would still
evaluate with respect what is actually F and deliver incorrect results.56 Kit Fine
(Prior and Fine (1979) p144) thus paraphrases quantification over all possible F s by
saying ‘the true world proposition w (whatever it might be) is such that necessarily
everything is entailed by w to be F ’.

It turns out that the assumptions built into FC5(SLB)—specifically the assumption
that every possible proposition is entailed by a strong world—ensures that this quan-
tifier behaves classically: see theorem 26 in appendix B. This means, among other
things, that they satisfy the converse Barcan formula and prove the necessity of exis-
tence. As we have observed already, we need additional modal assumptions about the

55One could restrict the separation axiom to conditions specified by predicates, thus exclud-
ing conditions specified with open formulas in one variable. But at this point we are no
longer embracing the spirit of separation. An open formula, A(x), lets us classify each natu-
ral number in one of two ways. As we run through the numbers we may find, for instance
that A(0), A(1),¬A(2), A(3),¬A(4),¬A(5), A(6), A(7) . . ., which in turn specifies a list of numbers
0, 1, 3, 6, 7 . . . satisfying the formula A(x). It would be mathematically revisionary to suggest that
this list doesn’t correspond to a subset of the natural numbers.

56See the discussion in Williamson (2010) p685-686.
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modal logic of 2 to show that classical quantifiers satisfy the Barcan formula—the
S5 principles—but these are built into FC5(SLB) as well. Indeed, not only is every
theorem of Classicism derivable with respect to the outer quantifiers in FC5(SLB),
but also the theorems we get by adding S5 and the Strong Leibniz Biconditionals to
Classicism.

Theorem 20. FC5(SLB) interprets C5(SLB).

Thus, for every theorem of C5(SLB) there is a corresponding a theorem (under
translation) of FC5(SLB).57

This theorem paves the way for applying the results in section 5 and 6 in a
contingentist setting, provided that the non-logical assumptions from section 4 can
also be defended on this interpretation. Although I am confident that it can be done,
I will not attempt to defend these non-logical assumptions under this reinterpretation.
I will instead side-step the issue and shift attention to some purely logical statements
that imply that there isn’t any mathematical contingency of the relevant sort.

In this paper we have concerned ourselves with the set-theoretic continuum hy-
pothesis, which is stated in terms of the non-logical predicate ∈. However, there
is another purely logical claim that is closely related to the set-theoretic continuum
hypothesis. Let’s call it the higher-order continuum hypothesis. It is possible in
higher-order logic to say that a property’s extension is (i) countably infinite, (ii) that
is has the size of the first uncountable infinity (there is a bijection between it and the
well-orders-up-to-isomorphism on a countably infinite property) and (iii) has the size
of the continuum (there is a bijection between it and subproperties-up-to-extension of
a countably infinite property). We call these properties ℵ0, ℵ1 and Continuum. See
Shapiro (1991) p105. Then we may formulate the continuum hypothesis as follows:

Higher-Order CH ∀e→tX(ContinuumX ↔ ℵ1X)

Higher-order CH entails the set-theoretic continuum hypothesis, since if x is an un-
countable set of real numbers, the property of belonging to x, λy.y ∈ x, must be at
least ℵ1 sized, and at most continuum sized, and so Higher-Order CH implies it is
continuum sized.

What does our free logician say about higher-order CH? Of course in Free Clas-
sicism, properties and relations, like sets, can exist contingently: what subproperties
a countably infinite property has may exist contingently, and the relevant bijective

57A certain sort of higher-order contingentist may reject the Strong Leibniz Biconditionals on the
grounds that existing propositions cannot be about non-existing individuals. On this picture strong
worlds shouldn’t exist, because they settle questions about merely possible individuals (see Stalnaker
(2010)). In this case a different motivation and definition of the outer quantifiers is needed. I believe
that this is possible using the results from work in progress with Cian Dorr, Peter Fritz and Ethan
Russo, where the assumption of the Strong Leibniz Biconditionals can be weakened to the assumption
that being true entails being entailed by a truth (λp.p ≤t→t λp∃tq(q ≤ p) — an assumption that
we believe can be motivated even in a higher-order contingentist setting. It’s also worth pointing
out that there are internal pressures for propositional contingentists, like Stalnaker and Fine, to
posit primitive outer quantifiers even if they cannot be defined, since they are necessary for even
expressing the idea that propositions do not exist unless the individuals they are about exist (these
worries are pressed in Fritz and Goodman (2016)). Thanks to an anonymous referee for pressing
this concern.
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relations could also fail to exist making it very plausible that one could construct
models in which Higher-order CH is contingent. But suppose we consider yet an-
other variant of the continuum hypothesis, now formulated using the classical outer
quantifiers. Let us write A∗ for the result of replacing each occurrence of the free
quantifiers in A with the corresponding outer quantifier. We are now concerned with
(Higher-Order CH)∗.

One might reasonably ask what relation this sentence bears to the mathematical
question of the continuum hypothesis. For that is formulated in familiar quantifica-
tional terms, whereas we have granted that the outer quantifiers may bear no relation
to ordinary quantificational words, as they appear in ordinary English. I won’t insist
that we refer to (Higher-Order CH)∗ as a ‘version of the continuum hypothesis’. How-
ever, the question of whether it is true or not is nonetheless something that can be
raised and investigated in the pure language of higher-order logic. And, like the set-
theoretic continuum hypothesis and its vanilla higher-order variant, it does not seem
to be something we can settle using any mathematical or logical methods presently
available to us. The reasons we have to think that Higher-order CH is indeterminate
apparently extend to (Higher-Order CH)∗.

The problem we are presented with is this. If we add to Classicism the principles
of S5 and the Leibniz biconditionals (or the Strong Leibniz Biconditionals) one can
prove the following schema, stating that there is no broad contingency in things stated
in purely logical terms:

No Pure Contingency P → 2P , where P is closed and contains no non-logical
vocabulary.

If purely logical statements cannot be broadly contingent, they cannot be mathemat-
ically contingent either. The argument for this is due to Zach Goodsell.58

Theorem 21 (Goodsell). C5(LB) proves No Pure Contingency.

But given theorem 21, every theorem of C5(LB) translates to a theorem of FC5(SLB)
implying that (Higher-Order CH)∗ is not broadly contingent (and consequently is not
indeterminate or mathematically contingent).

I will not insist that (Higher-Order CH)∗ and Higher-Order CH must stand or
fall together, or that the methods necessary for settling either must be equally high-
powered. Indeed, one method for settling these questions is to make contentious
metaphysical posits that would imply their trivial truth or falsity, and so make an
asymmetric treatment of their indeterminacy seem less ad hoc. One emerging line of
thought in the width contingentist literature is the idea that any things whatsoever
could have been the image of a function on the natural numbers (cf. the weaker thesis
of Countabilism, that concerns sets). Perhaps, then, (Higher-Order CH)∗ is trivially
true because in terms of the possibilist quantifiers all properties are countable∗, and
so Continuum∗ X and ℵ∗

1X are vacuously coextensive. But contentious metaphysics
can equally settle the plain higher-order continuum hypothesis. The assumption that
there are in fact only countably many things settles it vacuously in exactly the same
way, much as the thesis of nominalism would too.

58A proof is presented in Bacon and Dorr (forthcoming).
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It is also very unclear why we should care about the indeterminacy or contingency
of the versions of CH formulated using the contingentist free-logical quantifiers. There
will be some restrictions of the outer quantifiers by properties under which Higher-
Order CH can have any combination of truth or falsity with contingency or necessity
(this ought to be so, for instance, if there are infinitely many things in the outer sense
of the quantifiers). The version of CH we have been calling Higher-Order CH corre-
sponds to the contingency of CH under a restriction of the outer quantifiers by the
property of existence, in a distinctively metaphysical and inflationary sense—a sense
that is not pinned down by anything like inferential role in the way that the classical
outer quantifiers are. It would be hard to convince mathematicians that this is the
real question they should be focusing on, and it is far from obvious that mathematics
is the appropriate methodology for settling it. According to the classical quantifiers,
the truth of an existential there are F s can be inferred from a true instance, a is
F , so that if F is itself is expressed using only logical and mathematical vocabulary,
logico-mathematical methods can be used to settle the question of whether there are
F s. By contrast, the conditions under which an individual exists in the more de-
manding sense involves extra mathematical considerations. Consider, for instance, a
debate about the existence conditions for material objects, such as whether a table
could have existed without the matter that constitutes it. It’s a hard question, and
we shouldn’t expect the questions to become easier when we shift attention to set
existence. Certainly traditional mathematical methods are not equipped to answer
these questions.

8 Conclusion

I have argued that certain kinds of set-theoretic contingency require surrendering
two pieces of modal orthodoxy: that the broadest necessity has a logic of S5, and the
Leibniz biconditionals, connecting what is possible with what holds at some maxi-
mally specific possibility. Both of these modal doctrines deserve some scrutiny. The
simplest kind of model of modal logic employs possible worlds, and treats the broad-
est necessity as quantifying unrestrictedly over all worlds in the model, so it is easy
to see where the orthodoxy may have originated. But model theory alone does not
make for a positive argument. We now know how to model modal logic without
building in either of these assumptions.59 One of these generalizations, possibility
semantics—which replaces the complete worlds of possible world semantics with in-
complete possibilities—was in fact implicit in Cohen’s original papers introducing
the forcing method of the independence.60 Furthermore, there are several positions

59Sometimes it is argued that the broadest necessity must be modeled by a universal accessibility
relation (see for instance Lewis (1986)). A similar argument can be made in the possibility frame-
work. But this appeal to model theory is questionable, and ignores the possibility that which ‘worlds’
of the model represent genuine possibilities might itself be contingent, and so depend on what world
you are evaluating at. For further discussion of these sorts arguments, see Bacon (2018a) §5.4.

60Work on possibility semantics for modal logic was initiated in Humberstone (1981), and has
been continued more recently by Holliday and coauthors (see, for instance, Holliday (forthcoming)).
Prior even to possible world semantics, we had the algebraic approach to modal logic, found in
Bjarni Jonsson (1953), that makes no assumptions akin to the existence of possible worlds.
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in higher-order metaphysics that require rejecting S5 for the broadest necessity—the
philosophical terrain here is still largely unexplored.61 But before we can sign off on
width contingency, we need some guarantee that there aren’t any unforeseen incon-
sistencies in the view. A strong version of width contingency maintains, putting it
informally, that all forcing extensions of the set-theoretic universe are mathematically
possible—the principle I earlier called Forcing Possibilism. Indeed, I believe Forcing
Possibilism to be consistent with our background theory:62

Conjecture 22. Forcing Possibilism is consistent with C■∈.

Forcing Possibilism provides us with a particular view about how much mathe-
matical contingency there is. It is natural to push this line of thought further, and
ask if even more radical visions of mathematical contingency are consistent. For
instance, could one posit mathematical possibilities corresponding not just to first-
order models obtained by forcing but to arbitrary models satisfying the ZF axioms?
If this were consistent it would represent a vision in which mathematical contingency
is as widespread as possible: the axioms of ZF must express mathematical necessi-
ties, given that we have a principle to that effect, but any statement independent
of ZF would express a mathematically contingent proposition. It turns out, how-
ever, that mathematical contingency cannot be this rampant. We were able to derive
(corollary 10), in the minimal background theory C∈■, that arithmetical statements
are not mathematically contingent or indeterminate, even if they are independent of
our favored axiomatic theories (as, for instance, their consistency statements are).63

Determining where the line between the set-theoretic statements that are necessary
(determinate) and contingent (indeterminate) lies is thus non-trivial. We know that
the former includes at least all the arithmetical statements, and the latter may in-
clude statements like the continuum hypothesis, but figuring out more about where
this line lies seems to be an important avenue for further inquiry. For instance, it is
a well-known fact that if the axiom of choice is true in a model it is true in all forcing
extensions of it, so we might consider adding the axiom of choice to the list of claims
that are mathematically necessary.64

61Bacon (2023a) chapter 8, and Bacon and Dorr (forthcoming) section 2.4-2.6 overview some of
the options here.

62I have some partial models of of Forcing Possibilism and C■∈ for fragments of higher-order logic
that seem to generalize. However the verification of this conjecture will have to wait until a future
occasion.

63Corollary 10 is an analogue, in the present system, of Goodsell (2022) result concerning the
determinacy of arithmetic; here Goodsell’s assumption of Rigid Comprehension is not needed due to
our assumption that sets have rigid membership conditions. Note that there is another form of pos-
sibilism which states that there are broad possibilities corresponding to every model of ZF—indeed
it’s consistent that anything consistent with Classicism is broadly possible; see the constructions in
appendix E of Bacon and Dorr (forthcoming) and chapter 18 of Bacon (2023a).

64One can actually derive this claim—AC → ■AC—in the system obtained by adding the converse
of Forcing Possibilism to C■∈. The converse states that only claims made true by forcing are
mathematically possible; the possibility of AC failing then would imply the existence of a forcing
condition that refutes AC, and so AC would in fact be false.
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A Appendix: Proofs of Theorems

Theorem 5. (C5)
∀X(Nec∞ X → BFσ

X)

Proof. C5 contains the broad Barcan formula, BFσ
2.

Suppose that X is infinitely closed and that ∀σxX(Fx). We want to show that
X(∀σxFx). Since X is infinitely closed, it suffices to show that anything entailing ev-
ery X-necessary proposition also entails ∀σxFx. Suppore r entails every X-necessary
proposition. Since Fx is X-necessary for every x, ∀σx.2(r → Fx). By the broad
Barcan formula, 2∀σx(r → Fx) and so 2(r → ∀σxFx). Thus r entails ∀σxFx as
required. Since X is closed under entailment, X(∀σxFx).

Theorem 7. (C■∈)
Given BFe

2 (for broad necessity), being of stage α (i.e. Vα) is rigid for every ordinal
α.

Proof. As we have noted (theorem 5), BFe
2 for broad necessity implies the Barcan

formula for ■, BFe
■. Subsequent uses of the word ‘possibly’ and ‘necessarily’ in the

proof refer to ♦ and ■.
The proof is by transfinite induction. V0 is necessarily empty, and so vacuously

rigid.
Suppose that α is an ordinal, and for each β ∈ α, Vβ is rigid. We want to show

that Vα is rigid. Suppose ♦∃x(Vαx ∧ Fx). We must show ∃x(Vαx ∧ ♦Fx).
The Barcan formula ensures there is an x such that ♦(Vαx∧Fx), but we have no

guarantee that x is in fact Vα, or even if it is a set. Instead of directly showing x is
a set, we’ll define another set by separation containing the elements that would have
belonged to x if x had been a set, and show that this is a Vα set that is possibly F .

x′ := {y ∈
⋃
β∈α

Vβ | ■(Setx → y ∈ x)}

We can now show that x′ is identical x as follows. Given the mathematical necessity
of Set Extensionality it suffices to show that necessarily if x is a set, x coextensive
with x′: ■(Setx → ∀y.(y ∈ x ↔ y ∈ x′). We break this up into two claims:

1. ■(Setx → ∀y(y ∈ x′ → y ∈ x)

2. ■(Setx → ∀y(y ∈ x → y ∈ x′)

We establish 1 first. From the definition of membership in x′, we immediately have
∀y ∈ x′■(Setx → y ∈ x). Since Sets are Rigid, it follows that x′-restricted quantifi-
cation satisfies BF, so we can infer ■∀y ∈ x′(Setx → y ∈ x). By applying first-order
logic under the scope of ■, this is equivalent to 1.

To establish 2, it suffices to show ∀y■(Setx → (y ∈ x → y ∈ x′)) by the Barcan
formula. Let y be an arbitrary individual. Now either y ∈ x′ or y /∈ x′. Suppose
the former. Then by the rigidity of set membership y is necessarily in x′ and so
■(Setx → (y ∈ x → y ∈ x′)) follows. Suppose, then, that y /∈ x′. By the definition of
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x′ this would mean that ♦(Setx∧y /∈ x). It follows that ■(Setx → (y ∈ x → y ∈ x′)),
for if this were false we’d have ♦y ∈ x and by Sets are Rigid we could conclude
■(Setx → y ∈ x) contradicting the previous line. (It is here that we must use the
stronger version of Sets are Rigid outlined in footnote 36 if we are not assuming the
convergence axiom.)

By the necessity of Extensionality, we have shown that ■(Setx → x = x′).
♦(Vαx ∧ Fx) thus entails ♦Fx′. And by construction x′ is Vα so ∃x(Vαx ∧ ♦Fx)
as required.

Lemma 23 (C■∈). Sets are mathematically necessarily distinct: ∀exy(Setx∧Set y →
x ̸= y → ■x ̸= y)

Proof. Suppose the claim is false for contradiction. Choose x to be ∈-minimal such
that x possibly identical to some set it is distinct from. Choose y to be ∈-minimal
such that it is distinct from, but possibly identical to x.

Since x and y are distinct we may suppose, without loss of generality, that there is
some set z belonging to x but not belonging to y. By Set Rigidity, ■z ∈ x. So ♦z ∈ y,
since ♦x = y. Since ♦∃z′ ∈ y.z′ = z it follows by Set Rigidity that ∃z′ ∈ y♦z′ = z.
Since x is an ∈-minimal failure of the necessity of distinctness, z cannot be possibly
identical to anything distinct from it. It follows that whatever member of y that is
possibly identical to z is in fact identical to z, so that z is a member of y after all, a
contradiction.

Theorem 8. (C■∈)
Suppose A(x) is a first-order formula with free variables x. If all the quantifiers in
A(x) are restricted to rigid properties of sets, then A is modally absolute with respect
to the parameters y.

Proof. By Set Rigidity, x ∈ y is modally absolute, since if y is a set and x ∈ y
then by Set Rigidity x is necessarily in y. And if x ̸∈ y and y is a set, then by
the necessity of distinctness of sets x could not be identical to a member of y. The
necessity of identity and distinctness for sets ensures the modal absoluteness of x = y.
Suppose A and B are modally absolute. If for any sequence of sets x, A(x) and B(x,
then the modal absoluteness of A and B ensures that ■A(x) and ■B(x) and so
■(A(x)∧B(x)). Similarly if ¬(A(x)∧B(x)) either ¬A(x) or ¬B(x) and so given the
modal absoluteness of A and B we have either ■¬A(x) or ■¬B(x) and in either case
■¬(A ∧ B) as required. The disjunction case is a dualization of the above, and the
negation case is trivial.

Now suppose B(yx) is modally absolute, and λy.A(yx) is a rigid property of
sets (λy.A(yx) entails Set). We will show the modal absoluteness of ∀ey(A(yx) →
B(yx). Let x be a sequence of sets, and suppose ∀ey(A(yx) → B(yx). By the modal
absoluteness of B we can conclude ∀ey(A(yx) → ■B(yx)), and by the rigidity of A
we can get ■∀ey(A(yx) → B(yx). On the other hand, if ¬∀ey(A(yx) → B(yx) then
for some set y, (A(yx) ∧ ¬B(yx). By the modal absoluteness of B, ■¬B(yx) and
by the rigidity of A, ■A(yx) so ■∃ey(A(yx) ∧ ¬B(yx)), as required. The existential
case involves dualizing this argument.
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Theorem 9. (C■∈)
Given the truth of the theorems of C■∈, the following formulas are modally absolute.

1. being an ordinal.

2. being a limit ordinal.

3. being the smallest limit ordinal, the successor of the smallest limit ordinal, the
successor of the succcessor of the smallest limit ordinal...

moreover, the properties in 3. are rigid.

Proof. α is an ordinal if and only if α is (i) transitive ∀x ∈ α∀y ∈ x.y ∈ α) and (ii)
linearly ordered by membership (∀x ∈ α∀y ∈ α(x ̸= y → x ∈ y ∨ y ∈ x). All the
quantifiers in these definitions are restricted by conditions of the form ∈ z, which is
rigid by Set Rigidity, and entails sethood (by the definition of Set as λy∃x.y ∈ x).
Thus they are all modally absolute.

α is a limit ordinal if it is an ordinal and additionally ∀x ∈ α∃y ∈ α(x ∈ y) and
∃x ∈ α. These have the same property. α is the smallest limit ordinal iff it is a limit
ordinal, and for every x ∈ α x is not a limit ordinal. α is the successor of the smallest
limit ordinal iff every member of α is either belongs to the smallest limit ordinal or
is identical to it. Again, all quantifiers are restricted by membership to some set.

Finally we can show that the properties in 3 are rigid. Let ω be the set that is
actually the smallest limit ordinal. By the modal absoluteness, ω is necessarily the
smallest limit ordinal, and uniquely so, since is a theorem of ZF that if two sets are
the smallest limit ordinal they are identical. Suppose it is possible that something is
the smallest limit ordinal is also F . Then it is possible that ω is F , and thus there is
an actual smallest limit ordinal, ω, which is possibly F . Similar strategies apply to
the other properties listed in 3.

Theorem 12. (C5■∈)

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

Proof. Let Vω+2y be the property ‘λy.for some set α, α is the successor of the successor
of the smallest limit ordinal, and y is Vα’. Using the results above, it is easily seen
that this property is rigid.

The continuum hypothesis can be formulated in such a way that all quantifiers
are restricted by the predicate Vω+2. Since this predicate is rigid, CH is modally
absolute: CH → ■CH and ¬CH → ■CH. This establishes 1.

Let x be an uncountable set, and suppose that α is an ordinal such that x ∈ Vα.
Then the claim that x ∈ Vα and is uncountable is equivalent to the claim that x ∈ Vα

and there is no set of ordered pairs belonging to Vα+3 that is an injective function
from the smallest limit ordinal to x. All of the quantifiers in this claim are similarly
restricted to rigid properties.

3



Theorem 15. (C■)
Given LBt, ♦p ↔ ∃w(Worldw ∧ w ≤ p ∧ ♦w)

Proof. Mathematical Necessity states that anything entailed by the ■-necessities
must be itself ■-necessary. So any ♦-possibility is such that its negation is not
entailed by the ■-necessities.

Thus if ♦p, ■ ≰ ¬p. That is, for some r such that ∀q(■q → r ≤ q), r ≰ ¬p. This
means 3(r∧p), so by LBt, there is a world proposition w that entail r∧p. We finally
can see that w must be ♦-possible. For if not, then ■¬w, and since r entails every
■-necessity, r ≤ ¬w. But since w ≤ r, w ≤ ¬w, contradicting the assumption that
w is a world.

The right-to-left direction is obvious.

Theorem 16. (C■∈)
LBt→t and LBt imply that Vα is rigid for every ordinal α.

Proof. The proof is by transfinite induction. V0 is necessarily empty, and so vacuously
rigid.

Suppose that α is an ordinal, and for each β ∈ α, Vβ is rigid. We want to show
that Vα is rigid. Suppose ♦∃x(Vαx ∧ Fx). We must show ∃x(Vαx ∧ ♦Fx).

Since λx(Vαx ∧ Fx) is broadly possibly instantiated, it follows by the Leibniz
Biconditionals, LBe→t, that there is a world property W that that entails it, and by
proposition 15 it will be a world property that is mathematically possibly instanti-
ated.65 We can use this world property to define the actual member of Vα that’s
possibly F explicitly:

x′ := {y ∈
⋃
β∈α

Vβ | ■∀x(Wx → y ∈ x)}

Roughly W singles out a merely possible set. x′ is the set of ys in Vα that would have
belonged to the merely possible object picked out by W if it had existed. We can
now show that x′ is identical to the merely possible W : i.e. we show ■∀x(Wx → x =
x′). Given the mathematical necessity of Set Extensionality and the mathematical
possibility of W it suffices to show that necessarily whatever is W is coextensive with
x′: ■∀x(Wx → ∀y.(y ∈ x ↔ y ∈ x′). We break this up into two claims:

1. ■∀x(Wx → ∀y(y ∈ x′ → y ∈ x)

2. ■∀x(Wx → ∀y(y ∈ x → y ∈ x′)

We establish 1 first. From the definition of membership in x′, we immediately have
∀y ∈ x′■∀x(Wx → y ∈ x). Since Sets are Rigid, it follows that x′-restricted quantifi-
cation satisfies BF, so we can infer ■∀y ∈ x′∀x(Wx → y ∈ x). By applying first-order
logic under the scope of ■, this is equivalent to 1.

To establish 2, we first show ∀β ∈ α∀y(Vβy → ■∀x(Wx → (y ∈ x → y ∈ x′)).
Let β ∈ α and let y be an arbitrary set of rank β. Now either y ∈ x′ or y /∈ x′.

65♦∃x(Vαx∧Fx) implies by theorem 15 that there is a mathematically possible world proposition
w ≤ ∃x(Vαx ∧ Fx), and since 3∃x(w ∧ Vαx ∧ Fx) there is a world property W entailing λx(w ∧
Vαx ∧ Fx).
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Suppose the former. Then by the rigidity of set membership y is necessarily in x′ and
so ■∀x(Wx → (y ∈ x → y ∈ x′)) follows. Suppose then that y /∈ x′. By the condition
for belonging to x′, this means that W doesn’t entail the property of containing y.
Since W is a world property, it must entail the property of not belonging to y, and
thus must also mathematically necessitate it: ■∀x(Wx → y /∈ x). So this means
■∀x(Wx → (y ∈ x → y ∈ x′)), by applying some straightforward logic under the ■
(namely that y /∈ x entails y ∈ x → y ∈ x′).

This completes the argument that ∀β ∈ α∀y(Vβy → ■∀x(Wx → (y ∈ x → y ∈
x′)). By the inductive hypothesis, Vβ is rigid, and so we can infer ∀β ∈ α■∀y(Vβy →
∀x(Wx → (y ∈ x → y ∈ x′)). Since α is a set and sets are rigid, we can also infer
■(∀β ∈ α∀y(Vβy → ∀x(Wx → (y ∈ x → y ∈ x′)). Thus ■∀x(Wx → ∀y(y ∈ x →
∃β ∈ α.Vβy → y ∈ x′))) applying first-order logic under ■. Recall that necessarily
whatever the W set is, it’s Vα: thus, necessarily, whatever the W set is, if y belongs
to it, y is in Vβ for some β ∈ α (by the definition of Vα ). That is we have (a)
■∀x(Wx → Vαx), (b) ■∀x(Vαx ∧ y ∈ x → ∃β ∈ α.Vβy) (by definition of the V
relation and the mathematical necessity of ZF). So putting this together ■∀x(Wx →
∀y(y ∈ x → y ∈ x′))) as required.

Since W mathematically necessitates being identical to x′ (■∀x(Wx → x = x′),
and W is mathematically possible, it follows that ♦Wx′. Finally, since W entails F
it follows that ♦Fx′. By construction Vαx

′ so ∃x(Vαx ∧ ♦Fx) as required.

Theorem 18. (C■∈LBσ)

1. ■CH ∨■¬CH.

2. ∀ex(Uncountablex → ■Uncountablex)

Theorem 19. (C)
De Re Modal Choice and LBt entail LBσ→t.

Proof. We show LBe→t, since that is the instance required for theorem 16, however
the proof generalizes trivially.

Suppose that 3∃xFx. By LBt, there is a world proposition w such that w ≤t

∃xFx. Let R be a relation which is necessarily a well-order, and consider the prop-
erty of being the R minimal F while w is true: W := λx(w ∧ MinRFx) where
Min = λRFx(Fx ∧ ∀y(Fy → Rxy ∨ x = y)). Clearly W entails F . Let G be
another property. Since there is at most one minimal F of a well-order, we know
that 2(WOR → ∀x(MinRFx → Gx) ∨ ∀x(MinRFx → ¬Gx)), and since 2WOR,
2(∀x(MinRFx → Gx) ∨ ∀x(MinRFx → ¬Gx)). Since w settles every question
it either entails every R-minimal F is G, or that it’s not, 2(w → ∀x(MinRFx →
Gx)) ∨ 2(w → ∀x(MinRFx → ¬Gx)). Rearranging a little and appealing to the
definition of W this is 2∀x(Wx → Gx) ∨2∀x(Wx → ¬Gx)

B Appendix: Free Logic

In this appendix we provide the necessary background for the results discussed in
section 7.
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Free logic replaces the law of universal instantiation with its universal closure,
∀σy(∀σxFx → Fy). We must then also add the principle that universal quantification
distributes over conditionals. We of course, may apply the analogous substitutions
at other types.

Free Instantiation ∀σy(∀σxFx → Fy) provided y is not free in F .

Quantifier Normality ∀σx(A → B) → (∀σxA → ∀σxB)

The remaining principles of H—Gen, and the laws governing the truth-functional
connectives and λ—remain the same. Let FH, ‘free higher-order logic’, be the result
of making these substitutions to H, ad Free Classicism, FC, the result of closing FH
under the rule of equivalence.

Because the logic of the quantifiers in Free Classicism is weaker than Classicism,
notions we defined using the quantification over all necessities—entailment, broad
necessity, world, etc—may behave in undesirable ways. For example, a natural quan-
tificational definition of property entailment in Free Classicism, 2∀ex2(Fx → Gx),
is consistent with pathological situations where F entails G, a is F but a is not G.66

However, in Classicism many of the notions that we defined in terms of the classi-
cal quantifiers can be given equivalent definitions in terms of identity, and because
the logic of identity in Free Classicism is classical, we can recover the desired be-
haviour by using the identity-theoretic definitions instead. For instance, there is a
long tradition in logic, tracing back to George Boole, of defining entailment in terms
of identity. For properties F and G, F entails G when the property conjunction of F
with G (i.e. λx(Fx ∧ Gx)) just is F .67 The pathological situation mentioned above
cannot arise, for if F entails G and then F = (λx.Fx ∧ Gx). So by Leibniz’s law
Fa → (λx.Fx ∧Gx)a, and thus Fa → Ga by β and propositional logic.

Proposition 24. In Classicism, the following identities are derivable:

1. 2 = λp.p =t ⊤

2. ≤σ= λRS(R ∧σ S =σ→t R)

3. SWorld = λw((w ̸=t ⊥) ∧ (λp(w ≤ p ∨ w ≤ ¬p) =t→t λp.⊤))

Proofs of 1 and 2 may be found in Bacon (2023a) p149. The first conjunct of the
RHS of 3, w ̸=t ⊥, is equivalent to 3w by 1, and the second conjunct is equivalent
to 2∀tp(⊤ → (w ≤ p ∨ w ≤ ¬p)) by 2, and thus to 2∀tp(w ≤ p ∨ w ≤ ¬p).

Perhaps it is possible to augment Free Classicism with further principles that
would rule out these pathological situations, but we will avoid the need for any further
assumptions by adopting the identity theoretic definitions of these three notions listed
in proposition 24 as our official ones when working in Free Classicism.

66Models of this will interpret a with an individual that does not belong to the domain of quan-
tification at any world. It is quite easy to generate an extensional model of Free Classicism in which
∀ex(Fx → Gx) (and thus 2∀ex2(Fx → Gx)), Fa and ¬Ga are all true.

67Boole (1847), p20 project Gutenberg.
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We can now define a possibilist quantifier along the lines of Fine’s definition
discussed in section 3:

Πσ := λF∃tw(SWorldw ∧ w ∧ (λx.w ≤σ F )

where F has type σ → t and x has type σ. ΠeF means that, when w is the true strong
world proposition, the vacuous property of being such that w entails F . We have
replaced Fine’s 2∀σx2(w → Fx)—the potentially ill-behaved notion of entailment
mentioned above—with the corresponding identity theoretic entailment for reasons
detailed above.

We are now in a position to formulate the orthodox possible worlds metaphysics
within Free Classicism. We can do this by adding to FC the Strong Leibniz Con-
ditionals and the B schema and closing under the rule of equivalence as well as the
background logical rules, remembering, of course, that SWorld, ≤, 3, etc are now
given in identity theoretic terms.

SLBt
3A ↔ ∃tw(SWorldw ∧ w ≤ A)

B A → 23A

We will call the result FC5(SLB). Note that because necessitated quantificational
claims are weak in Free Classicism, merely adding the necessitations of the universal
closures of these principles to Free Classicism would fail to deliver identities that one
could obtain from the result of closing under the rule of equivalence. We could acheive
the same effect as closing under the rule of equivalence by adding a pair of identities
to Free Classicism. The claim that to be possible is to be true at some possible world,
and the claim that to be true entails to be necessarily possible.

SLBt
λ 3 =t→t λp(∃tw(SWorldw ∧ w ≤ p)

Bλ λp.p ≤t→t λp.23p

FC5 and FC(SLB) stand for the result adding, in the same way, only one of these
principles.

Lemma 25. FC5(SLB) contains A → ∃w(SWorldw ∧ w ∧ w ≤t A).

Proof. First we show SWorldw → 2SWorldw ∧ 2(∃tp.w = p). Since SWorldw is
the conjunction of a distinctness claim and an identity claim, the necessity of the
first conjunct follows from the necessity of distinctness and the necessity of identity
both of which are well-known theorems of S5 with the classical axioms of identity.68

Using SLB, and the fact that w is necessarily possible, 2∃tv(SWorld v ∧ v ≤ w). It’s
also necessary that for any strong world v ≤ w, w ≤ v. For w is necessarily a strong
world, and so must entail v or ¬v for any strong world v ≤ w, and it couldn’t entail
¬v since otherwise v ≤ ¬v by the transitivity of entailment, contradicting the fact
that v is possible. So necessarily, any strong world entailing w is identical to w, thus
2∃tv(SWorld v ∧ v =t w).

68For the necessity of identity see Kripke (1971), for the necessity of distinctness see Prior and
Prior (1955), pp. 206–7.
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Now we argue that every strong world, w, entails (i) w, (ii) that w is an existent
strong world, and (iii) A → (w ≤ A). (i) is trivial, (ii) is established above. For
(iii), λp.w ≤t→t λp.(w ∧ (p → (λp⊤)p) since p → ⊤ is a tautology. And since
λp.⊤ =t→t λp(w ≤ p∨w ≤ ¬p) (since w is a strong world) we have λp.w ≤ λp(w∧(p →
(w ≤ p∨w ≤ ¬p))). We also have λp.w ≤ λp(w∧p → w ≰ ¬p) since w∧p → w ≰ ¬p is
a theorem of Free Classicism. Since operator entailment is closed under propositional
logic, λp.w ≤ λp(p → w ≤ p). Apply both these operators to A and using β we get w
and A → w ≤ A, and since the former operator entails the latter, w ≤ (A → w ≤ A).

Putting (i),(ii) and (iii) together, we have that for every strong world, w, w ≤
(w ∧ SWorldw∃tp(p = w) ∧ (A → w ≤ A)). Using the fact that entailment is
closed under free logic we get w ≤ (A → ∃tw(w ∧ SWorldw ∧ w ≤ A))). Since
every strong world entails A → ∃tw(w ∧ SWorldw ∧ w ≤ A)) we can infer 2(A →
∃tw(w ∧ SWorldw ∧ w ≤ A))) by SLB.

Theorem 26. FC5(SLB) interprets C5(SLB)

Proof. We map each termM of L toM∗, the result of substituting each free quantifier
∀σ with Πσ. We wish to show that whenever A is a theorem of Classicism, A∗ is a
theorem of Free Classicism+.

Each tautology, instance of B, and instance of βη are mapped to tautologies
instances of B or instances of βη. Uses of modus ponens and the rule of equivalence are
similarly mapped to themselves. It remains to show that UI∗ and SLB∗ are theorems
of FC5(SLB), and, for Gen, that if (A → B)∗ is a theorem of Free Classicism+, so is
(A → ∀xB)∗.

Let’s begin with UI. We will show generally that ΠσF → Fa. Suppose ΠσF ,
so that there is some truth, p, such that λx(p ∧ Fx) =σ→t λx.p. Want to show
Fa. (λx.p)a =t p by β, and since p is true, we can conclude (λx.p)a. By the above
identity, λx(p ∧ Fx)a, so p ∧ Fa, and finally, Fa as required.

For the right-to-left direction of SLB∗ we show the dualized contrapositive version.
We will suppose that Πtw(SWorldw → w ≤ A) and show 2A. Expanding the
definition of Π, the true strong world, v, is such that λw.v ≤ λw.(SWorldw →
w ≤ A). Applying ∀t to both sides we see that the claim that everything is such
that v (i.e. ∀tp.v)) entails that every strong world is entails A (i.e ∀tw(SWorldw →
w ≤ A)). Since v is true, everything is such that v, and so every strong world
entails A. By SLB, 2A. For the converse of SLB∗ suppose Σtw(SWorldw ∧ w ≤
A)—i.e. λw.v ≰ λw(Sw → w ≰ A) where v is a true strong world. We want to
show 3A. It suffices to show ∃tu(SWorldu ∧ u ≤ A). Suppose for contradiction
that ∀tu(SWorldu → u ≰ A). By lemma there is a strong world v that is true
and entails ∀tu(SWorldu → u ≰ A), delivering also the corresponding entailment
between vacuous operators: λw.v ≤ λw∀u(SWorldu → u ≰ A). Since being a strong
world entails existence, we have λw.v ≤ λw(SWorldw → ∃tr.r = w). Since the
right-hand-sides of entailments are closed under free logical consequences, we have
λw.v ≤ λw(SWorldw∧∃tr.r = w → w ≰ A) and so λw.v ≤ λw(SWorldw → w ≰ A).
This contradicts our assumption.

For Gen it suffices to show that whenever we have a proof of A → B where x is
not free in B there is also a proof of A → ΠσxB. Since we can prove A → B, we can
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prove (λx(A → B))y ↔ (λx.⊤)y using β and so by the rule of equivalence we then
have λx(A → B) = λx.⊤.

Now we will show that A → ∃w(w ∧ SWorldw ∧ λx.w ≤ λx.B. Suppose A, and
let w be the true strong world entailing A (appealing to lemma 25). So w∧¬A =t ⊥.
Clearly λx.w ≤ λx(A → B) since λx.w ≤ λx.⊤.

λx(w∧ (A → B)) =σ→t λx.w. The left-hand-side is λx.((w∧¬A)∨ (w∧B)) using
Boolean equivalences that can be obtained from the Rule of Equivalence. Since x
isn’t free in A and w ∧ ¬A = ⊥ we can infer the the left-hand-side is λx.(w ∧ B) by
Leibniz’s law and Boolean equivalences. So λx(w ∧B) = λx.w as required.
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